EXPONENTIALLY TWISTED DE RHAM COHOMOLOGY AND
RIGID COHOMOLOGY

SHIZHANG LI AND DINGXIN ZHANG

ABsSTRACT. A comparison theorem between exponentially twisted de Rham coho-
mology and rigid cohomology with coefficients in a Dwork crystal is proved.

INTRODUCTION

0.1. Cohomology groups with exponential twists. Let k be a field. Let
f: X — A,l€ be a morphism of algebraic varieties over k. Depending upon what k is,
one can consider the following realizations of the “exponential motive” (in the sense of
Fresan—Jossen [22]) associated with the function f.

(1) Betti realization. When k is the field C of complex numbers, one can consider
the relative singular cohomology H®(X 2", f=1(¢)2%; R) (here R is the ring of coefficients,
t € C and |t| is sufficiently large, in fact any typical valueﬂ of f will do). The Betti
realization has an integral structure.

(2) De Rham realization. For an arbitrary k, one can consider the exponentially
twisted de Rham cohomology Hp (X; V), where V is the integrable connection on
the trivial module Ox defined by V(h) = dh + hdf. It should be brought to the
reader’s attention that the connection V has irregular singularity, thus does not fit
into the picture of [13].

When k = C, and when the Betti cohomology is taken R = C as its coeflicient
ring, it is known that the cohomology groups in and are isomorphic. This
theorem could be attributed to Deligne-Malgrange [I5l pp. 79, 81, 87| (idea: reduce
the problem to A! and use the fact there are two Stokes sectors), Dimca-Saito (the
upshot is [I7, Proposition 2.8], the idea is to use the “canonical” algebraic extension of
a meromorphic connection on a punctured disk to Gy, as explained in [30, I (4.5)]),
and Sabbah [35 Theorem 1.1].

(3) Rigid analytic de Rham realization. When k is a field equipped with a complete
ultrametric, one can consider the rigid analytic version of the twisted de Rham
cohomology Hpyp (X V).

When £ is of characteristic 0, it follows from the André-Baldassarri comparison
theorem [2, Theorem 6.1] that and are isomorphicﬂ Note that the complex
analytic version of this result is false even in the simplest situation X = A!, f =1d,
since V has irregular singularity at infinity (indeed, the complex analytification of
V¢ is isomorphic to the trivial connection: Vit = e fodoel).

e say t is a typical value of f if ¢ falls in the largest open subset of Al:2" on which R’f.Q are
locally constant for all 7.

2The André-Baldassarri theorem as stated in [2] does not immediately imply the said isomorphy,
as the variety we consider is not assumed to be defined over a number field. Instead of walking
through their dévissage argument, we shall present an alternative proof of it.
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(4) ¢-adic realization. Assume that & is a finite field of characteristic p > 0. Fix a
nontrivial additive character ¢: kK — C*, and an algebraic closure k* of k. Let k,, be
the subfield of k* such that [k, : k] = m. One can consider the L-series associated
with the exponential sums defined by f:

Sm(f) =D (Trg, i f(2)); Lf(t)ZeXp{Z b;;”tm}.

z€X (km) m=1

By a theorem of Grothendieck, this L-series is the (super) determinant of the Frobenius
operation on a twisted Q,-étale cohomology theory.

(5) Crystalline realization. When k is a perfect field of characteristic p > 0, one can
consider the rigid cohomology H:ig(X /K; f*L;), or rigid cohomology with compact
support Hy, (X/K; f*L)). Here, L, is a certain overconvergent isocrystal on Al
called “Dwork isocrystal”, and LY its dual isocrystal. The two cohomology groups are
related by Poincaré duality for rigid cohomology with twisted coefficients.

By a theorem of Etesse and Le Stum [2I] (see also [4]), the compactly supported
rigid cohomology admits a Frobenius operation which, when k is finite, could determine
the L-series as in Item .

In these notes, we shall prove a comparison theorem between and ,
thus building a bridge between topology and arithmetic.

To state the result, let us set up some notation.

e Let X be a smooth scheme over a finitely generated Z-algebra R of characteristic
0 which is an integral domain. Let f: X — AL be a morphism. Let 0: R — C be
any embedding of R into the field C of complex numbers.

e For each maximal prime p of R, let x(p) be the residue field of p, let K, be the
field of fractions of W (k(p))[(,], the ring of Witt vectors of x(p) with p*® roots of
unity adjoined.

e For an R-algebra R’, we still use f to denote the morphism Xgp = X xg
Spec(R') — AL,.

The most accessible statement of our result is the following.

Theorem 0.2. There is a dense Zariski open subset U of Spec(R) such that for
any closed point p € U, any integer m, the K,-dimension of the rigid cohomol-
ogy Hzlg(Xn(p)/Kp; f*Lr) equals the complex dimension of the complex vector space
HPR (X Xpg,o Spec(C); Vy).

In the main text, we shall give a precise condition on which p is good for the
comparison theorem to hold based on ramifications of f at infinity. The place p is
good, if the reduction of f modulo p does not have wild ramifications at infinity. See
Theorem [3.18l

We shall also prove a version of Theorem [0.2] comparing the algebraic Higgs cohomol-
ogy associated with f and an overconvergent Higgs cohomology. See Proposition [6.4]
This latter comparison theorem has significant weaker restrictions on the shape of f.

When X is an open subspace of P!, the theorem is due to Phillepe Robba [34]. When
X is a curve, the theorem is a simple corollary of Joe Kramer-Miller’s theorem [26],
Theorem 1.1]. It is also a consequence of the Grothendieck—Ogg—Shafarevich formula
for isocrystals (one can either compute local indices directly and apply Christol—
Mebkhout [9, Théoréme 5.0-10], or use the “irregularity = Swan conductor” theorem
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of Matsuda [3I], Tsuzuki [37], and Crew [12] together with the fact that the Swan
conductor an Artin-Schreier representation is 1), and the vanishing of H°.

Theorem (or rather its stronger version, Theorem is desirable, because it
seems that in the literature, the methods used to study exponential sums are either
toric in nature, or only applicable to “tame” functions (e.g., Newton nondegenerate
Laurent polynomials, or Newton nondegenerate and convenient polynomials), whereas
Theorem [3.18]is unconditional. In practice, Theorem [3.18 allows us to calculate the
dimension of the rigid cohomology, hence the degree of the L-series, using topological
methods. See for some concrete examples. Here we only explain one general
procedure for producing examples on which Theorem [0.2]is applicable.

Example 0.3 (Katz’s situation). Let P be a smooth projective variety of pure
dimension n over a number field K. Let £q,...,£L, be invertible sheaves on P.
Suppose we are given sections s; € H(X, £;) of these invertible sheaves such that the
zero loci D; = {s; = 0} form a divisor with strict normal crossings.

Let X = P—=J,_, D;. Let sp € HY(X; L' ® -+ ® L&), and soq = 871 -+~ 5o
Assume that Xy = {sp = 0} is a smooth subvariety of P. Write Xo, = {soc = 0} be
the vanishing divisor of s..

Then f(z) = so(z)/s00(x) is a well-defined regular function on X. We assume in
addition the divisor X, = {sg = 0} is transverse to all the intersections D;, N---ND;, .

T~

P

FIGURE 1. Katz’s situation

If p is a prime of Ok such that
(1) the logarithmic pairs (P, X&) and (Xg, Xo N X&) all have good reductions at
p, and
(2) the residue characteristic of p does not divide e; - - - e,
then Theorem (for the function f: X — A') is valid at p. Moreover, if Q;_, L&
is ample, then the rigid cohomology is nonzero in degree n only.
For more details, we refer the reader to Corollary

0.4. Previously known theorems about degrees of L-series.

(a) C-adic theorems. When k is a finite field, and when X = G}, Denef and Loeser
studied the étale cohomology appeared in . They showed that [I6, Theorem 1.3]
if f is “nondegenerate with respect to its Newton polyhedron at infinity”, then the
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twisted étale cohomology is acyclic except in degree n, and the Frobenius eigenvalues
are pure of weight n. In general, they were able to show that the Euler characteristic
of the étale cohomology agrees with the Euler characteristic of the algebraic de Rham
cohomology defined by a Teichmiiller lift of f (the combinatorial formulas for
both theories match).

In Katz’s situation , assuming the invertible sheaves £; are ample, the étale
cohomology associated with the exponential sums of the function g was studied by
Katz, see [23, Theorem 5.4.1]. In this case, he proved the L-series is a polynomial or a
reciprocal of a polynomial, whose degree can be calculated using Chern classes. We
could also deduce these results from Theorem

(b) p-adic theorems. When k is a finite field and X = GJ}, x GI", the p-adic
properties of the L-series were studied by E. Bombieri [6], and later greatly expanded
by A. Adolphson and S. Sperber [I]. The studies of Adolphson and Sperber are based
on Dwork’s works [I8], [19], and methods from singularity theory and toric geometry.

The upshot is that Adolphson and Sperber introduced a complex of p-adic Banach
spaces, and an operator a with trace acting on the complex, such that the hyper-
determinant of « gives rise to the L-series of the exponential sum. Moreover, when the
function f is “nondegenerate and convenient”, Adolphson and Sperber proved that
the cohomology spaces of this complex are finite dimensional, and concentrated in a
single cohomological degree. The dimensions of these cohomology spaces are the same
as the algebraic de Rham cohomology spaces.

Even when the exponential sum ¢s defined on G} x G}*, Theorem could imply
results that cannot be deduced from the classical theorems, as it could handle Newton-
degenerate functions. See Example for a (trivial) illustration and Example for
two more complicated cases.

Remark 0.5. The Dwork—Bombieri-Adolphson—Sperber complex is similar to the
complex computing the rigid cohomology (0.1}f5), and the former maps into the latter
naturally. Their differences can be summarized as follows

e the Dwork—Bombieri—-Adolphson—Sperber complex is a complex of Banach spaces,
whereas the complex computing rigid cohomology is a complex of ind-Banach
spaces, and is never Banach;

e the Dwork—Bombieri-Adolphson—Sperber complex should be thought of as a
twisted de Rham complex on a rigid analytic subspace of a toric variety, but the
rigid cohomology is defined via a complex on the rigid analytic torus (as a dagger
space);

e the finiteness of Dwork—Bombieri—-Adolphson—Sperber cohomology does not seem
to be known beyond the Newton nondegenerate case (if the exponential sum is
defined on a 1-dimensional torus, its finiteness may be recovered using a similar
technique we use in these notes); the rigid cohomology of an exponential sum is
always finite dimensional (special case of a general theorem of Kedlaya [24]).

We note that a comparison theorem between a dagger variant of Adolphson—Sperber

cohomology and rigid cohomology has been proven by Peigen Li [28].

0.6. About the proof. The strategy is to reduce the problems to A! via taking
direct images, and then use the theory of p-adic ordinary differential equations to
deal with the problems on A'. There are two major inputs, namely Christol and
Mebkhout’s characterization of “p-adic regular singularity” [8], and Robba’s index
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computation using radii of convergence [34]. It should also be obvious that many of
the arguments we present below are influenced by Baldassarri [3], and Chiarellotto [7].

In Section [T] we recall the notion of radius of convergence of a differential module. In
Section [2] we explain how to use Robba’s index theorem to make local calculations. In
Section [3| we globalize the results of Section [2| and prove the main theorem. Section
contains some examples. The last section discusses the Higgs variant of Theorem

Acknowledgment. We are grateful to Daqing Wan for communications on several
examples of exponential sums and for pointing out Katz’s theorem. We would like to
thank the referee for his/her helpful suggestions.

1. RADII OF CONVERGENCE

This section reviews the notion of radius of convergence of a differential module.
We also recall a few basic results, well-known to experts, that we will be using later.

1.1. Notation. In this section we fix the following notation.

e Let K be a complete ultrametric field of characteristic 0. Assume that the residue
field of K is of characteristic p > 0. Let 7 be an element of K satisfying 77~ ! +p = 0.
The field K is the “base field” where spaces are defined.

e Let ) be an algebraically closed complete ultrametric field containing K, such
that |2] = R>o. Assume that the residue field € is a transcendental extension of the
residue field of K. The field 2 plays an auxiliary role which will give the so-called
“generic points” to geometric objects.

o Let I be a connected subset of R>¢. Let A; be the rigid analytic space whose
underlying set is

{x € K& |z € I}
Let D*(x;7) be the rigid analytic space whose underlying set is the open/closed disk
of radius r centered at x € K. We use O to denote the sheaf of rigid analytic functions
on these spaces.

e In addition to the rigid analytic spaces above, we also consider their extensions
to Q. Let Argq be the analytic space over € whose points are {x € Q : |z| € I}.
Similarly, for each £ € Q and r € R, define D& (&) = {z € Q: |z — €| <7}, and
Do¢,r)={zeQ: |z ¢ <}

e By a “differential module” over A; or D¥(a;7), we shall mean a finite free
O-module £ over A; or D¥(a;7) equipped with an integrable connection.

e The p-Gauss norm on K|z] is

S aat

i€EN

= sup{|a;|p’ : i € N}.

P
It extends to the field K (z) of rational functions naturally. For p € R, denote by F),
the completion K (z) with respect to the p-Gauss norm |- |,. It turns out that F), is
also a complete ultrametric field, and carries a continuous extended derivation d/dz.

o A differential module over F), is a finite dimensional F),-vector space V equipped
with an K-linear map D: V — V, such that for any a € F,, any v € V, the Leibniz
rule D(av) = 9%v + aD(v) holds. It follows that D is automatically continuous.

Remark 1.2 (From O-modules to F,-modules). Let I C Rx>¢ be an interval. Let
p > 0 be an element in I. Then there is a natural continuous homomorphism

¢p: O(A1) = F,
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such that |o(f)], = |fl,-
To construct the homomorphism, first assume I = [a, b] is a closed interval. Then

each rigid analytic function f on Aj; could be written as

f(z) = Z ez, an € K,
nez
such that |c,|b" — 0 as n — +oo, and |c,la™ — 0 as n — —oo. In particular,
lenlp™ — 0 as n — +oo. Set Pn(z) = 3, <y cnt" € K(z). Then Py — f with
respect to the supremum norm of O(Ay). The condition that |c,|p™ — 0 implies that
(Pn)¥; is a Cauchy sequence with respect to the p-Gauss norm on K (z). Hence
limy s 4o Py exists in F,. We define this element to be ¢, (f).

In general, we choose an interval [a,b] C I containing p and define ¢,(f) =
©p(flaj,,)- One checks that this definition satisfies the required properties.

Thus, if N is a free O-module on A; for some connected I C R>g, p € I, then
the pullback V' = N ®o(a,),e, Fp gives rise to a differential module over F),, with
D(n)=V an for any n € N. For simplicity we shall write this tensor product simply
by V=N ®o F,.

Definition 1.3. Let V' be a vector space over F), equipped with a norm |-|. Recall that
the operator norm of an operator 7" on V' is defined to be [T’y = sup,ey—(oy |7'(v)|/[v];
and the spectral radius of T' to be the quantity

T 1/s
(Tlpy = lim [T°3/*,
The operator norm of T certainly depends upon the norm, but two equivalent norms
determine the same spectral radius [25], Proposition 6.1.5].
Let V be a differential module over F},. Then the radius of convergence of V' is

R(V) = [7] - [DIy»

For 0 < r < 1, we say a differential module M over A, 1 or Ay, q[ is overconvergent
(or solvable at 1) if lim, ;- p~'R(M ® F,) = 1.

Example 1.4. The spectral radius of the trivial differential module (F),, d/dz) equals
|7|p~t. Thus its radius of convergence equals p. As the spectral radius of a differential
module V is bigger than or equal to that of d/dz [25, Lemma 6.2.4], we know that
the radius of convergence of any differential module over F), is in the range ]0, p].

The terminology “radius of convergence” comes from the so-called “Dwork transfer
theorem”, which we record below.

Theorem 1.5 (Dwork). Let M be a differential module over Ay of rank n. Let p € 1.
Then the following two conditions are equivalent.
(1) The radius of convergence of M ®@o F, is R.
(2) For any § € Agpy.q, the restriction of M to the open disk Dg(§; R) has n
linearly independent horizontal sections.

Proof. The proof of (1) = (2) is |25, Theorem 9.6.1]. Here the variable ¢ used by
Kedlaya is t — £ in our context, and the differential module considered by Kedlaya is
the restriction of M to the open disk (thus the connection matrix automatically has
entries in the ring of analytic elements, fulfilling the hypothesis of the cited theorem).
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The proof of (2) = (1) is [25, Proposition 9.7.5]. Here it is important to note that
we should consider the field 2 instead of K itself, so that we have enough “generic
points” available. O

The “most” convergent differential modules over A are said to satisfy the “Robba
condition”. These modules should be thought of as the correct p-adic analogues of
differential modules with regular singularities over a punctured disk. See Remark

Definition 1.6. Let M be a differential module over A;. M is said to satisfy the
Robba condition if for any p € I, the differential module M ®¢o F, has radius of
convergence equal to p.

Lemma 1.7. Let M be a differential module over Ay satisfying the Robba condition.
Then any subquotient differential module of M satisfies the Robba condition.

Proof. This lemma should be well-known. Let us nevertheless provide the proof for
the convenience of the reader.

Let zo be a point of A; . Let M"” be a quotient of M. Then the horizontal basis
of M| is sent to a set of horizontal sections of M” which necessarily generate

D, (zo;lzol)
S " e

M’ |Dsz (woilo])* This implies that M |D§(wo;\wo\) is trivial.

Let M’ be a differential submodule of M. Now put M = M/M’. Since

Hp g (Dg (0; [2o]); M) — Hpg (Dg (z0; |20]); M")

is surjective, and since both M and M" are trivial differential modules over D, (zo; |zol),
the dimension of horizontal sections of M’ over D, (xo; |zo|) equals the rank of M’,
i.e., M’ is trivial on Dg,(zo; |xol). O

Finally, we quote a theorem due to Christol and Mebkhout [8]. See also [20] and [25]
Theorem 13.7.1].

Theorem 1.8 (Christol-Mebkhout). Let M be a differential module over Ay .
Assume that there exists a basis eq, ..., e, of M such that

o the entries of the matrixz representation n of Vt% with respect to this basis belong
to O(D7(0; 1)),

o M is overconvergent (see Definition , and

o the eigenvalues of n(0) belong to Z, N Q.

Then there exists a basis of M under which the matriz of Via has entries in Zyp.
Moreover, M satisfies the Robba condition.

Remark 1.9. Let K be a field of characteristic 0. Let ¥ C AL C PL be a finite
subset of K-rational points. Let (£,V) be an algebraic integrable connection on
A}( — 3 which has regular singularity near oco.

Since £ is regular at oo, there is a basis of £ (as an Oa1 —x-Module), such that
under this basis, the entries of the matrix n of Vt a are w1thout poles along oo.
Such bases are called “saturated bases” in the theory of algebraic ordinary differential
equations. The eigenvalues value of n(0) are called the exponents of (€, V) near oco.
These exponents certainly depend on the choice of the saturated basis mentioned
above. But exponents under different choices of saturated bases will only differ by
integers. If o is an exponent of (£, V) near oo, and t: K — C is an embedding of
K into C, then exp(—2my/—11(a)) are the eigenvalues of the monodromy operators
(around o0) of (&, V) regarded as complex integrable connections.
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In this paper, (£,V) will arise as Gauss—Manin connections of some function
f: X — AL thus their monodromy eigenvalues are roots of unity, and the exponents
are all rational numbers. Theorem [I.8] tells us that,

e if K is a field equipped with a complete ultrametric whose residue characteristic

isp>0,

o if |x| <1 for any point z € ¥,

o if the exponents of (£, V) are in QN Z,, and

o if (€%, ;s V) is overconvergent,
then (€[4, ., V) will satisfy the Robba condition. Here Aj; . can be identified
with the punctured disk centered at oo of radius 1.

2. INDICES OF DIFFERENTIAL MODULES

In this section, we use the notion of radii of convergence and Robba’s index theorem
to prove some cohomology groups are zero. The notation and conventions made in
Paragraph [I.1] are still enforced in this section.

Lemma 2.1. Let N be a differential module over Ay, ). Assume that there exists
a < p < b such that the radius of convergence of any differential submodule of N ® F),
is < p. Then HYp (A N) = {0}

Proof. Let N’ be the O-submodule of N generated by horizontal sections of N. Since
O(Alq,)) is noetherian, N” is finitely generated, and is equipped with a trivial
connection. It follows that N’ is a finite free differential module over Ay, ), say of
rank . Thus N’ ®p F), is a trivial differential submodule of N ®¢ F), of rank r. Being
trivial, N’ ® o F, has radius of convergence equal to p. The hypothesis then implies
that 7 = 0, in other words, N' = 0 and HY (A, 4: N) = {0}. O

We give a simple calculation of the radius of convergence.

Example 2.2. Let L be the differential module on Ay ;f = D7 (0;1) = {0} defined by
the system
d ™

de a2’
Then for any 0 < p < 1, the radii of convergence of both L and its dual are equal to
2
p<p.

Proof (cf. |34, §5.4.2]). Let t € Q be a any point of radius p. Let z =t +y. A

horizontal section of the differential system is given by exp (—71' (ﬁ — %)) The
Taylor series for ﬁ — % at y =0 is

1
(2.3) > £y’

v=1

For each r < p, the r-Gauss norm of this Taylor series equals

sup{r”/p" T v € N} = r/p%.

Thus exp (7r (ﬁ -

>> converges for y in the open disk D~ (0;7) where r < p?.

1
t
We claim that u(y) = exp (7r (ﬁ - %)) diverges for some y satisfying |y| = p?.
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Indeed, write g — ¢ as &y + h(y). Then |h(y)[,2 < 1 and exp (—7h(y)) is

convergent for all y € 2 such that |y| = p?. It follows that
Yy
exp (53) = uly) - exp (~mh(y)

is convergent on {y € 0 : |y| = p?}, if u(y) were convergent there. This is absurd, as
S~ a"/n! diverges. Thus, the radius of convergence of L equals p? < p.
The dual of L is the differential module associated with the differential system
d n T
dz = 2?2’

and the argument is identical. O

Lemma 2.4. Suppose [a,b] is an interval contained in 10,1[. Let M be a differential
module on A,y satisfying the Robba condition. Then we have

HODR(A[%;)];M X L) =0.

Proof. By Lemma any submodule of M satisfies the Robba condition. By [25]
Lemma 9.4.6(c)| and Example[2.2] the radii of convergence of all differential submodules
of M ® L are equal to the radius of convergence of L, which is < p at F,. Thus
Lemma [2.1] implies the desired result. O

The above vanishing of cohomology groups implies the vanishing of the cohomology
groups of some special differential modules over the Robba ring.

Definition 2.5. The Robba ring is the colimit
R = colim O(A]r,l[) = colim O(A[r,l[)
r—1— r—1—

It is equipped with a derivation d/dx. As in Paragraph one can define the notion
of a differential module over R. Suppose M is a differential module over R with
derivation D. Define H) (R; M) = Ker D, and Hh (R; M) = Coker D.

Lemma 2.6. Let M be a differential module on the space D~(0;1) = {0}. Assume
that M satisfies the hypothesis of Theorem[1.8 Let L be as in Example[2.3 Then we
have

HYR(R; (M ®L)®R) =Hpr(R; (M @ L) @ R) = 0.

Proof. Let s be a horizontal section of M ® L over the Robba ring, then there must
exist r < 1 such that the section is defined on the annulus Ay, [, and thus on the
annulus A,y for any [a,b] C ]r,1[. By Lemma we know the section has to be
zero on all such A, ), and hence the section must be globally zero. This implies that
HY (R: (M @ L) @ R) = {0}.

Thanks to the vanishing of H?, the vanishing of H' will follow if we can show the
Euler characteristic of M ® L ® R is zero. By Theorem we can make a Qp-linear
change of bases to put the matrix of V_ a in a upper triangular form. Thus there is a
filtration

M=M,D>M,_1D---DM; DM_, Z{O}

of M by differential submodules such that the subquotients M;/M;_; are of rank 1,
necessarily satisfy the Robba condition (Lemma . Thus, the vanishing of the Euler
characteristic of M ® L ® R is implied by the vanishing of the Euler characteristic
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of M;/M;_1 ® L. Thus we may assume M has rank 1 and is defined by a differential
equation % — £, withceZ,NQ.
The de Rham complex for M ® L ® R is the filtered colimit
colimDR(M ® L ® On,, ,,)-

r—1-

Choose a sequence of numbers a,, (1) such that a,(r) 1 17. The above complex reads
colimlim DR(M ® L|A[T ()] ).
r—l- n o
The transition maps in the inverse system having dense images, one knows that R'lim,,
equals zero (Kiehl’s Theorem B). Thus it suffices to prove the Euler characteristic of

| Me L|A[r,an<r>1

(2.7) Va:M®Lla,,..
is zero.

Note that M ® L is defined by a differential operator of order one with coefficients
in Q(x). Thus we can use Robba’s index theorem [34, Proposition 4.11], which in our

situation asserts that, if I = [a,b], then

dlog R((M ® L) ®o F,) _ dlogR((M ® L) ®0o Fp)
dlogp p=a dlog p p=b

(2.8)  x(Vajdae) =

Since the radius of convergence of M @ L at F, always equals p?, both quantities of the
right hand side of the displayed equation are equal to 2. Thus the Euler characteristic
is zero. This completes the proof of the lemma. O

Lemma 2.9. Let M be differential module over Ay 1| satisfying the hypothesis of
Theorem[1.8 Let L be as in Example[2.3. Then

HY R (Ajo,15 M ®@ L) = Hhp(Aj1; M @ L) = {0}

Proof. The de Rham cohomology groups are computed by the inverse limit
V.a
lim F(A]n’,M ® L) —d=, F(AIH,M ® L)

where I, is a sequence of closed intervals [ay, by] contained in |0, 1[ such that a, {0,
b, 1T 1. Again, R!lim is zero since the transition maps have dense image (Kiehl’s
Theorem B). Thus, it suffices to prove the vanishing of Hijy for each A;.

For each closed interval I C ]0,1[, the vanishing of zeroth cohomology follows from
Lemma [2:4] To show that the first cohomology groups are zero, it suffices to prove
the Euler characteristic of

Va
NAsM®L) —=T(A; ML)
is zero. By Theorem there is a filtration
M=M,>M,_1D>---DM DM_ :{0}

of M by differential submodules such that the subquotients M;/M;_; are of rank 1,
necessarily satisfy the Robba condition. By induction, it suffices to prove the assertion
assuming M has rank 1. In the rank 1 case, Robba’s index theorem applies.
Arguing as in the proof of Lemma [2.6] shows that the Euler characteristic is zero. O
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3. RIGID COHOMOLOGY ASSOCIATED WITH A REGULAR FUNCTION

3.1. In this section, we continue using the notation made in Section Thus &
is a perfect field of characteristic p > 0, K is a complete discrete valued field of
characteristic 0 containing an element 7 satisfying 77~! 4+ p = 0, and the residue field
of K is k. The ring of integers of K is denoted by Ok

Our policy is to use Gothic letters to denote schemes over Ok . For an Og-scheme
G, let So =G o, k, S =6 R0, K. For a finite type K-scheme T, let T*" be the
rigid analytic space associated with T.

We denote by D~ (oo;7) the rigid analytic space Pt —D*(0;771).

3.2. Let conventions be as in Paragraph Let f: X — P}QK be a generically
smooth, proper morphism between Og-schemes. Let X = f _1(A}9K). We assume
that X is smooth over Og. Denote by f|x by f. The morphisms X¢ — P}, X — PL,
Xo — A}, and X — AL induced by f: X — P}QK or f: X — A}QK are still denoted
by f or f respectively. This abuse of notation is unlikely to cause confusions.

In the following, we will assume that f: X — P%QK satisfies the following hypothesis.

(¥) Let S C P} be the non-smooth locus of f: X — PL. Then the intersection of
P! with the nonsmooth locus of f: X — P%DK is contained in the Zariski closure
of S. We assume S N D~ (c0; 1) is a subset of {co}. Additionally, we assume
the exponents of the algebraic Gauss—Manin connections of f: X — AL (see
Remark and below) near co are in QN Z, .

The condition () will be used to ensure the restrictions of the Gauss—Manin connections
on D~ (o0o; 1) are overconvergent, and satisfy the Robba condition.

Remark 3.3. If X is smooth over O of relative pure dimension n, and if the
polar divisor B = ?*(oook) = > m;®; is a relative Cartier divisor with relative
strict normal crossings over O, such that p 1 m; for any 4, then we shall prove in
Lemma below that the condition (x) is valid.

3.4. In order to calculate rigid cohomology, we need to set up some notation for
tubular neighborhoods. For r < 1, set [Pyl, = ?71(D+(oo;r)) (“closed tubular
neighborhood of radius 1), | Xo[x = X —U, -, [Pz, and V, := X = [Polx,,.

Denote by j the inclusion map | Xo[x — X, and by j, the inclusion map V, — X.

3.5 (The Dwork isocrystal). In this paragraph we explain what the Dwork isocrystal
is. The affine line A} sits in the frame (A} C P} C f’ék) where IS}QK is the formal
completion of the projective line over Ok with respect to the maximal ideal of Og.
Therefore to describe this crystal we only need to write down a presentation of it (as
an integrable connection) on P ™"

On the rigid analytic projective line, the tubular neighborhood of oo € P}c is
the complement of the closed unit disk D*(0,1) of radius 1, i.e., D™ (o0;1). The
analytification of the algebraic integrable connection

Vp: Oay = Qhs,  he> dh+ whdt

is easily seen to have p as its radius of convergence on D~ (a;p) for any |a] < 1,
p < 1. Its restriction to the tubular neighborhood of co is precisely the connection
we dealt with in Example hence has radius of convergence equal to p? at F),
which converges to 1 as p — 1. Thus (O Al Vb) is overconvergent for any open
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disk. By the theory of rigid cohomology ([27, Definition 7.2.14, Proposition 7.2.15]),
the differential module determined by (O A}(,an7VD) gives rise to an overconvergent

isocrystal on A}, which could be taken as a coefficient system for the rigid cohomology.
We denote it by L, and call it the Dwork isocrystal. See [27), §4.2.1].

3.6. Let notation and conventions be as in Paragraph [3.2] Consider the morphism
f: X — Al Then we can define an algebraic integrable connection on the structure
sheaf Ox

Var: Ox = Qx i, Vas(h) = dh+ whdf.

This integrable connection is the inverse image of the connection (Op:, Vp) via the
morphism f.

By analytification, we obtain an analytic connection, still denoted by V,, on the
rigid analytic space X?2".

Proposition 3.7. Let notation and conventions be as in Paragraphs[3.3 —[5.6, Then
for each integer m, the natural maps

HER (X5 Virp) = Hpr(X™ Vap) = H, (Xo/K; f*Lr)

are isomorphisms of K-vector spaces.

Proof that the right hand side arrow is an isomorphism. Without loss of generality
we could assume X is irreducible. When f: X — Al is a constant morphism,
the proposition is trivial. In the sequel we shall assume f: X — AL is surjective.
To begin with, let us write down the complex that computes the rigid cohomology.
Let
§1 0% g = colim .57

an/K 7lyam/](.

The analytification of the connection V. gives rise to an integrable connection
Vi jT0gan = jT0L,
which extends to a dagger version of the de Rham complex
—an . vh o, vt A
DR(X ", V1) : J1Ogan == 10k = - = 1O

For an admissible open subspace V of X, let DR(V, V, #|v) be the de Rham
complex of V¢ restricted to V. Set DR(V,V,¢|v) = RI'(V;DR(V,Vlv)). We
have

DR(X™; V') := RD(X™; DR(X™, V1)) = colim RU(X™; Rjr. DR(Vy, Vs v, ).
r—

A priori, this complex depends upon the formal completion of the scheme X along
the maximal ideal of Og. However, since X is proper and the integrable connection
(Oxan, V) is overconvergent (being the inverse image of an overconvergent integrable
connection), [27, Corollary 8.2.3] asserts that it only depends upon Xg and f: Xo — A
We have then
DR(X™, V) = RTyig(Xo; foLr).

Next we explain how to compute the cohomology of the de Rham complex. For
any r < 1 sufficiently close to 1, set V,. = f_l(D_(O;T_l)) C X?". Then X®" has an
admissible open covering

X =V, U (D (o0;1) = {oc}).
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In the bounded derived category of K-vector spaces, the Mayer—Vietoris theorem gives
an isomorphism between the de Rham complex DR(X, V) and the homotopy fiber
of the map

DR(V;, Vxs) & DR(F (D™ (00;:1) = {o0}), Vi) = DR(V, N T (D~ (003 1)), Ve s).

Since the colimit, as » — 17, of DR(V,, V) equals RI'yiz(Xo, f§Lx), in order to

prove the comparison between rigid and de Rham cohomology it suffices to prove the

natural morphism

(3.8) DR(F (D™ (003 1)={00}), Viry) = colim DR(V; 1] (D (003 1)={00}), V)
r—1-

is an isomorphism in the derived category of vector spaces over K.

Let S be the finite subspace of A}f“ containing all the critical values of f. Let
X’ = X — f~1(S). Then the direct image sheaf

(3.9) £ =R (% /. d),

is equipped with a Gauss—Manin connection V. By projection formula, the direct
image sheaf

R(f[x/)«(DR(Oxan, Virs) | x7)

is isomorphic to the analytification of the tensor product
ER® (OA}( 5 VD)

1,an
on A =S,

Thus, if u: PR =]S| — P2™ denotes the open immersion, then

PL
ul (€™, Vam),

is the rigid cohomological direct image R(f] x4 )rigxOx -
Using the Leray spectral sequence, we see that in order to prove the morphism (3.8))
is an isomorphism, it suffices to prove that for any ¢, the map
(3.10)
RT(D ™ (c0;1) —{ooh; £ @ (OA}%M, Vp)) = (T:oﬁlilrzl RTU(Apy 13 €M @ (OA?D, Vb))

is an isomorphism.

We shall show that both sides of are acyclic. For convenience, we shall use a
coordinate z around co € P}fn, thus swap oo and 0. Let M be the restriction of the
analytification of £ = Ri(f|X/)*(QB(,/K) to the disk D~(0;1) — {0}.

In the lifted situation, we know that M is overconvergent. This is proved by
P. Berthelot [5, Théoréme 5] and N. Tsuzuki [38, Theorem 4.1.1]. The hypothesis
on exponents in (%) implies that M satisfies the Robba condition by Theorem
Moreover M is overconvergent, On the other hand, the differential module L considered
in Example is precisely the restriction of (Oa1_, Vp)™ in the vicinity of co.

The right hand side of now reads

r—1-

Va
colim {(M @ L)|ag, —= (M® L)|A[m[} ,

which is precisely the de Rham complex of M ® L restricted to the Robba ring:
(M@L)®oR 2 (M®L)®o R.
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Thus, Lemma implies that the right hand side of (3.10) is trivial. The acyclicity of
the left hand side of (3.10) follows from Lemma This completes the proof that
the analytic twisted de Rham cohomology is isomorphic to the rigid cohomology. [

Lemma 3.11. Let notation be as above. Assume further that the hypothesis of
Remark is true. Then the differential module M satisfies (%)

Proof. By the regularity of the Gauss—Manin system, the differential module M is a
restriction of an algebraic integrable connection which is regular singular around 0. In
particular, there exists a basis of M such that the derivation Vﬁ is given by
% —n(x)

where 7 is a rational function which has at worst a simple pole at « = 0 (for example,
take the restriction of an algebraic basis and restrict to the analytic open D~ (o00;1)).

As we have assumed that the multiplicities of the polar divisor are prime to p, the
algebraic calculation of exponents of the Gauss—Manin system around infinity implies
that the eigenvalues of (7)|;=¢ belong to Z, N Q. (One can embed field of definition
of the variety into C, then use [14, Exposé XIV, Proof of Proposition 4.15] to show
that the eigenvalue of 1(0) with respect to the algebraic basis are rational numbers
whose denominators are not divisible by p.) O

Proof that the left hand side arrow is an isomorphism. This is a theorem of André
and Baldassarri [2, Theorem 6.1]. Since the precise hypothesis of their theorem is not
met in the present situation (the connection is not defined over a number field), we
shall nevertheless provide a proof. The key point is a theorem of Clark, which states
that in a good situation, the analytic index of a differential operator equals its formal
index.

Let B = f* (00 ) be the polar divisor. By GAGA, the algebraic de Rham complex
is computed by complex

DRuer:  Ogon (+Prcd) —5 Qeenn (+Prca) = -+ = Qe (4 Prea),
which is a subcomplex of DR(X™, Vyr). Here Q%un(+Pred) = Uoe) Qtan (€ Prea)-
Cover X" by Xon = ?_1(A1’an) and [Polg , = ?_I(D‘*‘(oo; €)), the Mayer—Vietoris
theorem implies that DR(X, V) is the homotopy fiber of
DR(X™, V)@ RT(F (D (00;€)); DRumer) — DR(X*™ N F (DT (00:€)), Viry).

Taking colimit with respect to e — 0, we see it suffices to prove the colimit, as € — 0,
of the following map

RU(F (D" (00;€)); DRumer) — DR(X™ N T (D* (003 €)), Vrs)-

is a quasi-isomorphism. Again, we shall show both items are acyclic.

Let & be the algebraic Gauss-Manin system on A'—S asin (3.9). Let ¢: A} —S —
Pl be the inclusion. Let £(xS) = 1.£. Using Leray spectral sequence, it suffices to
prove the de Rham complex of

(312) C?Egn(gan ® (OA}é"“‘v VD))|D"’(oo;e)—{o<>}
(“de Rham complex with essential singularities”) and that of

(3.13) colim(£(+5) @ (Oay, (+5), VD)) ™+ (s
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(“de Rham complex with moderate singularities”) are acyclic.

A similar argument as in the proof of Lemma [2.9| using Robba’s index theorem
yields that has zero Euler characteristic and vanishing H, thus acyclic.

Since the de Rham complex of is a subcomplex of that of , its HY is
also trivial.

We proceed to prove that has zero Euler characteristic. Let Oy be the
local ring Opkan,oo with the uniformizer = defined by a coordinate around oco. Let

Oy =K [«] be its z-adic completion. Then the de Rham complex of is that of
(E(x5) @ (Oay (+5), VD)™ B0, 0 Qo
=(E(+3) ® (Oay (+5), VD)™ @0,y 00 Ooll/2].
Choose a cyclic vector [13] IT 1.3] for the differential module
(£(x5) @ (Oay, (+5), VD)™ 0,1 00 Oo[1/2]

over the differential field Og[1/z]. Thus we obtain a differential operator u =3, aidd—;;
with a; € Op, and the Euler characteristic equals the index of

Oo[1/z] & Op[1/x].
On the other hand, Malgrange’s index theorem [29, Théoréme 2.1b] implies that the
index of

Ool1/z] % Og[1/x]
equals zero. Thus, it suffices to prove the index of

(3.14) Oy /0y 2 Oy Oy

equals zero. Since £ is regular singular, Vp is rank one and irregular, the indicial
polynomial of u is zero. Thus the hypothesis on non-Liouville difference in Clark’s
theorem [I0] as stated in |7, Théoréme 2.12] is satisfied, and this theorem implies the
index of is zero. This completes the proof of Proposition O

Next we prove the main result of these notes by removing the properness hypothesis
from Proposition [3.7]

3.15. We follow the conventions made in Paragraph Let f: X — Py, be a proper
morphism between Op-schemes. Assume X has relative pure dimension n over Ok-.
Let X be a Zariski open subscheme of X, such that

e XC:=7 (Ab,),

e H=P=-X = U;Zl $; is a relative Cartier divisor with relative strict normal

crossings over Of.
We shall denote the restriction of f to X by f.

For each subset J of {1,2,...,s}, denote by $; the intersection ﬂjeJﬁj. (Conven-
tion: when J is the empty set, $; is understood as 9).) Then each ), is a smooth
Ox-scheme. The restriction of f to §;, the closure of £ in X, is denoted by f;, and
fls, is denoted by f;.

3.16. Hypothesis. In the following, we shall assume that that the exponents of the
algebraic Gauss—Manin connections of f;: H; — Ak near oo are in QN Z,. In other
words, we assume that the condition () holds for each f;.
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Remark 3.17. In , if X is smooth over Ok, X=X is a divisor with strict normal
crossings, and the polar divisor P = f (00p, ) can be written as P = S D,
such that each ©; is smooth and irreducible, p { m; for any 4, then Hypothesis -
holds.

The following theorem is a more general version of Proposition when Preq =
T (000, )red = X=X, the theorem reduces to Proposition the general case is
deduced from Proposition [3.7] by some standard yoga.

Theorem 3.18. Let notation and conventions be as in (3.15)). Assume Hypothesis
holds. Then for each integer m, the natural maps

HPR(X;Vay) = HEp (X* Vay) = HEL(Xo/K; f7 L)

Tig
are 1somorphisms.

Proof. The morphism f;: §; — A}QK is a proper. By Hypothesis we may apply
Proposition [3.7] to each f;. Thus, the natural maps
HER (Hi; Vag,) = HpR(H5" Vg, ) = B ((Hi)o/ K5 f7Lx)

are isomorphisms.
There exists a second-quadrant spectral sequence with

(319) _l,] = @ Hilg% HJ /K fJ )
Card J=i
(1,7 > 0) which abuts to Hn;ﬂ (Xo/K; f*L;). Indeed, Mayer—Vietoris for a finite

closed covering [27, Proposition 7.4.13] gives a spectral sequence

b % 8 «

EY' = P Hi ((Hi)o/K; fiLx) = Rlvigc (,U (Hj)o/ K f ﬁnU(Hj)(,) ;
Card J=a+1 J=

(a,b > 0). Using the normal crossing hypothesis, applying Poincaré duality [27

Corollary 8.3.14], the finiteness of rigid cohomology [24], and replacing 7 by —= (since

the dual of £, is £_), we obtain a spectral sequence

(3.20) E;*P = P B (H)o/E; f7Lx) = Rlug i), Yo/ K f*Lr)
Card J=a+1

(a,b>0). Since RT'yiz(Xo/K;e) fits into a distinguished triangle
RFTig7U(Hj)O (Yo/K, .) — Rfrig(YO/K; 0) — Rrrig(Xo/K; O) —

(the derived incarnation of the relative cohomology sequence), we deduce the desired
spectral sequence by augmenting the rigid cohomology of Y; to the zeroth
column of the spectral sequence .

We have similar spectral sequences for the algebraic and analytic de Rham coho-
mology groups. The F;-differentials of these spectral sequence are all Gysin maps in
the various theories. Thus the natural maps between the theories give rise to maps of
these E4-spectral sequences. Proposition [3.7 implies that these maps are isomorphisms
on the Fj-stage. Thus they induce isomorphisms on the abutments. O

Proof of Theorem[0.3 Let notation be as in the statement of Theorem [0.2] Let K
be the field of fractions of R. Using resolution of singularities, upon making a finite
extension of K (both rigid and de Rham cohomology are compatible with such field
extensions), we can embed Xk into a smooth proper K-scheme Xk such that Xg—Xk
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has strict normal crossings, and f extends to a morphism f: Xg — Pk. There is a
Zariski open subset U of Spec(R) over which

e Xk as well as all the intersections of the boundary divisors have good reduction

at primes in U, and

e the multiplicities of the components of the polar divisor are not divisible by

residue characteristics of U.

We may assume U is affine, and by abuse of notation we will still denote its
associated ring by R. For each closed point p in U, let p be the characteristic of the
residue field x(p). Then there exists a p-adically complete discrete valuation ring
R’ containing (, and a ring homomorphism R — R/, such that the closed point of
Spec(R’) is mapped to p. Let K’ be the field of fractions of R’ and let k' be its residue
field. Then we have

HY (Xu(p) /Ky f*Lr) @k, K' = H},

rig(Xk’/K/; f*ﬁﬂ')

We can then apply Remark [3.17] and Theorem [3:18] to X g/, obtaining an isomorphism
between the rigid cohomology Hy,, (X /K'; L) and the exponentially twisted de Rham
cohomology of X .

To conclude, we use the following two facts: (i) V.; and V; have isomorphic
de Rham cohomology group over K', for any ¢ € K'*; and (ii) the formation of twisted
algebraic de Rham cohomology is compatible with extension of scalars. The fact (i) is
proved below as a lemma, and the fact (ii) is clear. O

Lemma 3.21. Let K be a field of characteristic 0. Let f: X — A' be a morphism
of smooth K-schemes. Then for all ¢ € K*, the dimensions of the K-vector spaces
HiRg(X;Ves) are the same.

Proof. It suffices to prove V.r and V; have isomorphic twisted de Rham cohomology
groups. The standard argument (extracting coeflicients defining X and f, choosing a
finitely generated subfield, embedding the field into C) allows us to assume K = C.
Then we can use the isomorphism provided by and to conclude that the
two twisted de Rham cohomology groups are isomorphic to the relative cohomology
groups

H(X™, f7H(1)™;C), and H'(X™ (cf)"'()™;C) (|| >0)

respectively. When [t] is large, these two groups are isomorphic, since f is topologically
a fibration away from finitely many points. O

4. KATZ’S SITUATION

Below we shall prove Corollary confirming the assertions made in Example [0.3
We begin with some rather trivial topological discussions. In (4.2)—(4.4), complex
algebraic varieties are equipped with analytic topology.

4.1. Let g: Y — A be a proper, generically smooth morphism of algebraic varieties
over C. Let X be an open dense subvariety of Y, and E =Y — X. Suppose that there
is a neighborhood T of F such that g|r and g|7—pg are locally topologically trivial
fibrations (hence are trivial as A is contractible). Let F be a generic fiber of g and
F=FnX.
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>~<
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Lemma 4.2. Notation as in the natural map H(Y, F;Z) — H (X, F;Z) is an
isomorphism for all i.

Proof. This is a simple application of excision. To begin with, since T — Al is a
trivial fibration, there is a deformation retract from T onto 7'N F. This induces a
homotopy equivalence between T'U F' and F. Thus the pair (Y,7 U F) and the pair
(Y, F) have the same cohomology.

Since F is contained in the interior of TUF, excision implies that the pair (Y, TUF)
and the pair (X, (T—E)UF) have the same cohomology. Using the fact that T—F — A!
is a trivial fibration, we find a deformation retract from (T'— E) U F onto F. Thus the
pair (X, (T— E)U F) and the pair (X, F') have the same cohomology. This completes
the proof. O

Next, we explain how to construct Y and F used in Lemma 4.7 from Katz’s
situation.

Construction 4.3. Let P be a smooth proper scheme over a subfield of C of pure
dimension d. Let L1, ..., L, be invertible sheaves on X. Let s; € H°(P; L;) be sections
of L; fori=1,...,r. Let D; be the vanishing scheme of s;.

Let e1,...,e, > 1 be natural numbers, and sy € HY(P; L9 @ --- @ L&) be
a nonzero section. Let Xy be the vanishing locus of sy. We shall assume that
Xo U U:Zl D; is a divisor with strict normal crossings.

Let soo = [[ 5", Let [u,v] be the homogeneous coordinates of P1. Define X to be
the closed subscheme of P x P! defined as the vanishing scheme of usy —vss = 0. Note
that usg — Vs is a section of the invertible sheaf (& L)X Op1(1). Let f: X — P!
be the morphism induced by the projection to P'. Let co = [0, 1] € P!, and we regard
P! —{oc} as a copy of Al. Set Y = f~1(A'). Set g = fly, X = P—J;_, D;. Then
X is naturally an open subset of Y. Write f = g|x.

It is clear the function ¢g: Y — A! satisfies the hypotheses of Lemma Indeed,
let 7: X — P be the restriction of the projection pr;: P x P! — P. Then the
inverse image of intersection B = X N (| D;) in X is isomorphic to B x P!, and
E = 7~1(B)NY is isomorphic to B x Al. The fiber g~1(0) = X, C Y can be identified
with F, and f~1(0) C X can be identified with F. The inverse image under 7 of a
tubular neighborhood of B serves as the role of T'.
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In practice, we are more interested in considering the function f on X; and the
construction above allows us to construct a proper function g which is ready for taking
reduction modulo p.

The next lemma tells us that in a certain preferable situation, the calculation of
cohomology groups reduces to the calculation of the Euler characteristics.

Lemma 4.4. Notation as in Construction[{.3, assume in addition that X and P—X,
are affine (e.g., when the invertible sheaf @;_, L is ample). Then H (X, f~1(0))
18 monzero only if i = dim X .

The Euler characteristic of H*(X, f~1(0); Q) is
_1ydim P C((Q}J)v)
O S T

See for example [23, Theorem 5.4.1]. If the hypothesis of Lemma is fulfilled, then
the absolute value of this number is also the dimension of HY¥™X (X f~1(0); Q).

Proof of Lemma[{.4} In the following we shall take the constant field Q as the coeffi-
cients of the cohomology groups, and suppress it from the expressions. Since X and
f71(0) are smooth affine varieties, the relative cohomology H*(X, f~1(0)) vanishes if
i > dim X. It suffices to prove the relative cohomology also vanishes when ¢ < dim X.

For any subset J of {1,2,...,r}, let D; = ﬂje] D;. Let D@ = UCardJ:p Dy,
and write D(®©) = P. The scheme D®) is smooth proper of dimension n — p, and the
natural morphism D®) — P is affine.

There exists a spectral sequence

(4.5) E P =H1"2(DP) DP) xp Xy) = HIP(X, £71(0)).

Granting the existence of this spectral sequence, let us finish the proof. Since P — X
is affine, D®) — D®) x p X are affine for all p. If i < dim X, then i — p < dim D®),
By Artin’s vanishing theorem, we have

H=?(D®) DP) x p Xo) = H?(D® = D@ %, X)) = {0}.

It follows that E; % =0 if ¢ — p < dim X. This implies that H*(X, f~1(0)) vanishes
when i < dim X, as desired. The construction of the spectral sequence (4.5)) will be
recalled in Paragraph at the end of this section. O

Having discussed some topology, we now return to Example [0.3] We henceforth
enforce the notation set up there.

Corollary 4.6. Assume p is a prime of K satisfying the two conditions (0.3)/1) and
(0.3)/2). Let p be the residue characteristic of p, and K, be the completion of K at p.
(1) The dimension of the rigid cohomology space H,, (X @ Ky(¢p)/Kp(Cp); £* L)

rig
is equal to the dimension of the rational vector space H (X, f~1(0)8: Q).
(2) If both X and P — Xy are affine, the rigid cohomology is nonzero only in

cohomology degree dim X, and its dimension over K, is

/ (%)) |

p (L4320 eict (L) [Ty (1 + ea(L3))

Thus, the L-series associated with the function g modulo p is a polynomial or a
c((2p)Y)

e (L) [T ¥ e (Ea) -

reciprocal of a polynomial, whose degree equals fP s
i=1
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If £; are ample, the assertion (2) is due to N. Katz [23] (without the liftablity
hypothesis).

Proof of Corollary[{.6 We first perform Construction obtaining f: X — P! over
the field K. To show that f satisfies the Hypotheses we need to verify that
the exponents of the Gauss—Manin connections of f are all rational numbers whose
denominators are not divisible by p. This can checked over C. Since g|gxa1 can be
identified with the projection to the second factor, it suffices to show the eigenvalues

of the monodromy of g near f 71(00) are not p-power roots of unity. Take a disk

A around oo, and let h: V = ?71(A) — A be the holomorphic function induced
by f. It suffices to show that the monodromy eigenvalues on the vanishing cycle
Ror(Qy) are not p-power roots of unity. By a local calculation, Maxim, Morihiko
Saito, and Schiirmann [32], Proposition 4.1, (a) “Normal crossing case”| showed that
under our hypothesis we have R¢p,(Qv)|p = 0. At a point in |J D; — B, the function h
is locally of the form h(zq,...,z,) = xflll e xf’ for some m in the analytic topology,
and therefore the monodromy eigenvalues at the stalks of R'¢p,(Qy ) are not p-power
roots of unity for all . By a spectral sequence argument, using the relation between
monodromy and exponents [I3, Théoréme II 1.17], we conclude that the denominators
of the exponents of the Gauss-Manin connections near infinity are not divisible by p.

Localizing an integral model of the morphism f: X — P! at the prime p, we get a

morphism
F X Ph, .

From the above discussion, Theorem [3.18] is applicable, and it implies the rigid
cohomology associated with the reduction of f has the same dimension as the twisted
algebraic de Rham cohomology over K.

By performing a base extension to C, using the isomorphism provided by
and (0.1)f2), we know that the dimension of the twisted algebraic de Rham coho-
mology defined by ¢ is equal to the complex dimension of the relative cohomology
HY (X&', f~1(0)&; C). Here using t = 0 instead of a generic ¢ is legal, because by
construction 0 is a typical value of g; see the footnote on page [I}

The second assertion follows from Lemma [£4] and the trace formula. O

A particular instance of the Katz’s situation is as follows. Let P = P", X, be the
Fermat hypersurface defined by > zf“ =0, and let X be the vanishing locus of the
monomial zg - --z,. Then the function

20 2n

Zs :
e R Al

P = {32 =0} — A!

fits Katz’s situation. Assuming the residue characteristic of p is not a factor of n + 1,
then we can apply Theorem [3.18 Since this is the “ample case”, Lemma [£.4] implies
that the rigid cohomology is trivial except in degree n, and its dimension equals (—1)"
times the Euler characteristics, which is n™(n 4+ 1). Of course, this computation may
already be deduced from Katz’s theorem.

4.7. We recall a construction of the spectral sequence for convenience of the
reader. Notation and conventions will be as in Lemma 4]

Consider the natural simplicial morphism a: DY) — P, viewing P as a constant
simplicial scheme. Then the relative cohomology of the pair (X, g~1(0)) is computed
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by the homotopy cofiber of the morphism
aa'vQ = nQ,

where v: P— Xy — P is the open immersion.

Dy

The complex
ava'vQ = [ — ag*a!zng — al*a!lle]

can be understood explicitly using the fact that D intersects X transversely. Indeed,
if ay is the inclusion morphism from D into P, then a; = ]_[Card J—; aj, and (we use
V for Verdier dual)

aywayuQldim X] = a . (a%v,Q[dim X])V.

Let vy: Dy=DjN Xy — Dy be the inclusion morphism.
We claim that a% Rv,Q = Rv;,Q. Indeed, consider the following fiber diagram,

XoND;y — X
D, —* s p
and the distinguished triangle
1,:'Q - Q — Ru,Q — .

Since Xg is a smooth divisor in P, the Thom isomorphism theorem implies that
'Qp = Qx,[—2]. Pulling back the above distinguished triangle by a; yields a
distinguished triangle

a7t Qx,[—2] = Qp, = ajRv,.Q — .
Since ¢ is proper, and since Xg N Dy is smooth of codimension 1, we have
a}.k][’*QXO [_2] = LJ*QXOODJ [_2]
= LJ*L{]QDJ.

By adjunction, (Hom being taken in the derived category) Hom(e J*L{]QX(N Qx,) equals
Hom(¢,Q,;Q) = H(X, N Dy, Q). Thus up to a nonzero constant multiple on each
connected component of XoN D, there exists only one nonzero morphism from ¢ J*LE]Q
to Q in the derived category. (In fact, using the existence of integral structure, the
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term “up to a nonzero constant” could be replaced by “up to sign”.) Therefore the
homotopy cofiber of the morphism

ayt«Qx,[~2] — Qb,
|

Lty Qp,
is necessarily isomorphic to the homotopy cofiber of the canonical morphism

|
LJ*LIJQD‘] — QDJ

which is Rv;,Q. This justifies the claim.
Thus, letting p = Card J be the codimension of D ;, we have

a‘]*aljva = ay.(vnQ)[—2p].

The complex a . (v Q) is precisely the derived incarnation of the relative cohomology
H*(Dy, Dy N Xp). The spectral sequence (associated with the “filtration béte”) of the
complex a,a'vyQ — Q gives the spectral sequence (4.5)).

5. EXAMPLES

Example 5.1. As a sanity check, here is a trivial example calculating the degree of
the L-series of a Newton degenerate polynomial.

Let k be a finite field of characteristic > 2. Let f: A? — A} be the regular function
defined by the polynomial f(z,y) = 2%y — 2. (The projective completion of the curve
f(z,y) =t, t #0, has a cuspidal singularity at [0, 1, 0], which can be simultaneously
resolved by blowing this point up.)

The morphism is smooth, the polynomial f is Newton nondegenerate, but it is not
convenient. Thus the theorems of Adolphson—Sperber [I] and Denef-Loeser [16] do
not give the degree of the L-series.

A direct computation is easy:

SulH) = 3 tmlaty—a))

z,yEkm
= Z wm(l‘Qy)’(pm(x)il
T,YEKkm
=q"+ ) @) D tm(a?y)
z#0 YELkm,
= qm_

It follows that the L-series is (1 — qt)~!.

Here is a topological calculation. It is easy to see f(xz,y) =t for ¢ # 0 is isomorphic
to Gy, as schemes over k. Thus one can still use the Teichmiiller lift of f to conclude
that the rigid cohomology H;‘ig(A%; f*Ly) is 1-dimensional in degree 2, and zero

otherwise. In particular, L(¢)~! is a linear polynomial.

Next, we recall the degree and total degree of the L-series of exponential sums.
Let notation be as in Paragraph . In view of Grothendieck’s theorem, we can
write Ly(t) = P(t)/Q(t), where P,Q € Q[t] are coprime. Then the degree of Ly is
deg @ — deg P; the total degree of Ly is deg P 4 deg Q.
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By the trace formula for rigid cohomology, we know that the degree of Ly is equal
to the Euler characteristic > (—1)*dim H%,, (X; f*L,), and the total degree of Ly is

rig,c

no bigger than > dim Hﬁig’C(X s f*Lr). (Since X is smooth, Poincaré duality identifies
the dimension of the compactly supported cohomology with the dimension of the rigid

cohomology up to a dimension shift.)

Example 5.2. Hyperplane arrangements give rise to many interesting exponential
sums whose L-series cannot be computed using traditional methods. But topological
and combinatorial methods sometimes can deduce useful information about the Milnor
fiber of the arrangement, which, through Theorem can determine the dimension
of the rigid cohomology for large primes.

Here are two concrete examples.

(1) Let f(z,y,2) = zyz(z — y)(y — 2)(z — x) be the polynomial defining the so-
called Az plane arrangement. Then f is not convenient, but Cohen and Suciu [11]
Example 5.1] have shown that the Betti numbers of the “Milnor fiber” f = 1 are: by = 1,
by = 7, by = 18. Since f is homogeneous, all the fibers f~1(¢), t # 0, are homeomorphic.
It follows that the relative cohomology H®(C3, f~1(t); Z) equals the reduced singular
cohomology of f~1(1), up to a shift of cohomology degree. Using the isomorphism
between relative cohomology and twisted de Rham cohomology , we
deduce that the nonzero Betti numbers of the twisted de Rham cohomology are
by =T7,b3 = 18.

Since f is homogeneous of degree 6, the Gauss—-Manin connections of f are defined
over G, C A', and will be trivialized by a 6-to-1 finite étale covering of Gy,.
Therefore, the denominators of the exponents of the Gauss—Manin connections will
only contain 2 and 3 as prime factors. Thus, for p # 2,3, Theorem implies that
the rigid cohomology groups of f*L, with compact support are of dimensions 0,7, 18
respectively. In particular, the degree of the L-series of the exponential sum associated
with f has degree 11; and total degree < 25.

(2) Let f(x,y,2) = zyz(z+y)(z —y)(z+ 2)(x — z)(y + 2)(y — 2) be the polynomial
defining the so-called Bs plane arrangement. Cohen and Suciu [I1, Example 5.2] have
shown that the Betti numbers of the Milnor fiber f =1 are: by =1, by = 8, by = 79.
As in (1), when p > 3, we get the dimension of the rigid cohomology of f*L.. We
may conclude that the degree of the L-series of f is 71, and the total degree is < 87.

Example 5.3 (Exponential sum on a curve). Let X be a smooth irreducible projective
curve of genus g over a finite field k. Let f: X — P. be a generically étale, degree
d morphism with ramification indices not divisible by p. We assume there is a good
lift of f (i.e., satisfies Hypothesis . Let Z = f~Y(o0) = {71,...,Tm}. Let V be
a nonempty Zariski open subset of X such that f(V) C AL. We assume that the
ramification points of f as well as the points X — V' are rational over k (which is
harmless in considering the degree of L-series). Let ¢ = Card(Z=1V).

Then a topological calculation implies that the twisted algebraic de Rham coho-
mology of a lift of f has cohomology in degree 1 only, and the dimension equals
2g +c+m + d — 2. In this case Theorem applies and we conclude that L;llc (t) is
a polynomial of degree 2g + ¢ + m + d — 2. This matches the length of the “Hodge
polygon” considered by Kramer-Miller [26, Theorem 1.1].

Example 5.4 (Exponential sum on SLy). Let k be a finite field of characteristic
p > 0. Let V = k? be the standard representation of SLy. For A € SLy(k), let
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A = Tr(Sym™A). Then for ay,...,ax € k,

N
f(A) — Z anA(n)
n=1

is a regular function on SLa. Then the rigid cohomology H;, (SLa; f* L) is related to
the exponential sum

(5.5) > Um(f(A)),

A€ESLy (k)

where k,, is a fixed degree m extension of k, ¥ is a nontrivial additive character on
k, Yy = 91 0 Ty, /-

If p is sufficiently large, and if (a1, ...,ay) is sufficiently general, we can calculate
the dimension of the rigid cohomology using topology. It is not difficult to see f=1(t) is
N disjoint union of P! x P!—=A. Using the long exact sequence for relative cohomology
one sees that H*(SL2(C), f~1(¢); Q) is nonzero only in degree 1, and 3 and of dimension
N —1, N + 1 respectively. Thus the L-series Lf(t) of the exponential sums is
the reciprocal of a degree 2N polynomial.

6. A REMARK ON HIGGS COHOMOLOGY

Let f: X — A' be a nonconstant morphism from a smooth algebraic variety of pure
dimension n over a field k to the affine line. We have been studying cohomological
objects that are related to the irregular connection V¢. In the theory of twisted
algebraic de Rham cohomology, one can associate an irregular Higgs field to the
connection Vy, i.e., the Higgs field defined by Adf. Thus, in conjunction with the
de Rham complex of V¢ one may also study the algebraic Higgs complex

o Adf o Adf o AdS .
A celebrated theorem of Barannikov—Kontsevich (the first published proof is due to
Sabbah [36]; for a p-adic proof, see Ogus—Vologodsky [33]) asserts that the algebraic
Higgs cohomology and the twisted algebraic de Rham cohomology have the same
dimension.

In this section we explain how to transplant this to the rigid analytic world. We
shall compare a “dagger” variant of the Higgs cohomology with the algebraic Higgs
cohomology. Then in the nice situation, Theorem allows us to relate twisted rigid
cohomology and the dagger Higgs cohomology.

In the work of Adolphson—Sperber [I] on exponential sums, one also finds the
use of algebraic Higgs cohomology. In fact their finiteness theorem is deduced from
the finiteness of the Higgs cohomology of the reduction. In contrast, the result of
this section happens completely on the generic fiber, thereby does not really concern
whether the pole divisor has good reduction or not.

6.1. Notation.

e Let K be a discrete valuation field of characteristic 0 whose residue characteristic
is p. Let X be a scheme smooth over a discrete valuation ring Ok

e Let f: X — A} be a proper function admitting a compactification f:X— P}QK,
in which X is smooth over R.

e Also denote by f: X — PL and f: X — PL be the restriction of f to the
generic fibers X and X of X and X respectively.
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e Let V, be the inverse image f~1(DT(0;7)) of the rigid analytic disk under f.
Thus V, is an rigid analytic subspace of X.

6.2. Hypothesis. We assume that f: X — A} has no critical values in D~ (o0; 1).

Note that we do not enforce the hypothesis that the components of the pole divisor
have good reduction anymore.

6.3. We can consider three types of Higgs cohomology.
(1) The algebraic Higgs cohomology
RI(X; (2%, df))
of X.
(2) A dagger version of the Higgs cohomology

RT(X™; 41 (0%, df)),

where for a real number 7, j,: V;, — X denotes the open inclusion.

(3) The analytic Higgs cohomology

RE(Ves (y,,df))  (r>1).
Proposition 6.4. Notation as above, the natural morphisms
RT(X; (%, df)) = RO(Vis (,,df)) = ROX™; j{ (%, df)

are quasi-isomorphisms.
Proof. Tt suffices to prove the first arrow is a quasi-isomorphism, as the third item is
obtained from the second by taking colimit with respect to r — 17.

Let P be the pole divisor of f: X — P}.. For any connected subset I of R>g, let

Tr be the inverse image of the rigid analytic annulus A7(co) centered at co € PL.
Thus

Tr = f~H(A1(00)).
Let Q%.n(+P) be the subcomplex of j,Q%.. consisting of differential forms with at
worst poles along P. Then by rigid analytic GAGA, the natural morphism of complexes

RT(X;(Qx,df)) = T(X; (Q%en (xP), df))

“moderate Higgs complex”
is a quasi-isomorphism.
Choose a function 7 + §,: ]1,00[ — R such that 1 > 6, > r~!. For each r > 1,
V.. and To,s,] form an admissible cover of X. By Mayer—Vietoris, the complex
RIO(X™, (Q%an (+P),df)) is the homotopy kernel of

RI(V;: (9%,.df)) @ RU(Tio5,1: (9%, (+P), df)) = BO(Tjo 515 (9%, .df)

71157‘]7

We shall show that the natural morphism

RI(Tjo,5,3; (1, 5, (+P), df)) = RU(T15,35 (7, df))

0,57] -1.5,]

is a quasi-isomorphism (in fact, we shall show both are acyclic).

Below we shall write a = r~!, b =6,. Thus 0 < a < b < 1. Let U = Sp(A) be an
affinoid subdomain of T}y 5 admitting an étale morphism to the disk D*(0;1)™. Then
W = UNT4y is an affinoid subdomain of U as T}, ) — Tjo,p) is an affinoid morphism.
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It suffices to prove the restrictions of the two Higgs complexes on respectively U and
W are acyclic.

Write W = Sp(B). Then the morphism f: X — P! gives rise to an element in A,
and an element in B via the morphism A — B. With respect to the the coordinate
system provided by the étale morphism U — D*(0;1)", the Higgs complex of B is
the Koszul complex Kos(B®™; %7 R é%‘n) associated with the partial derivatives
Of /0x;. Since f is smooth, the Jacobian ideal (i.e., the ideal formed by the partials
derivatives of f) cuts out the empty rigid analytic space. By Nullstellensatz for affinoid
algebras, the Jacobian ideal equals the unit ideal of B. The acyclicity of the Koszul
complex then follows from a standard algebra lemma, Lemma below.

The exactness of the “moderate Higgs complex” on Sp(A) is acyclic is proved
similarly. We apply Lemma to A[1/f] and the partial derivatives of f. Again,
since f is smooth, the ordinary Hilbert Nullstellensatz implies that the Jacobian ideal

of f form the unit ideal of A[1/f]. O
Lemma 6.5. Let R be a commutative ring. Let aq,...,a, € R be elements such that
S~ a;R = R. Then the Koszul complex Kos(R®";ay,...,a,) is evact in every degree.

Proof. We can assume R is local since we can check the exactness at every prime.
In this local situation, our condition is equivalent to saying that at least one of the
elements a; is a unit in R, hence without loss of generality we may assume a; is a unit
in R. Since we have a factorization:

Kos(R®™:ay,...,a,) = ®[R 4 R),
R

it suffices to note that R - R is acyclic. O
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