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Abstract. A comparison theorem between exponentially twisted de Rham coho-
mology and rigid cohomology with coefficients in a Dwork crystal is proved.

Introduction

0.1. Cohomology groups with exponential twists. Let k be a field. Let
f : X → A1

k be a morphism of algebraic varieties over k. Depending upon what k is,
one can consider the following realizations of the “exponential motive” (in the sense of
Fresán–Jossen [22]) associated with the function f .

(1) Betti realization. When k is the field C of complex numbers, one can consider
the relative singular cohomology H•(Xan, f−1(t)an;R) (here R is the ring of coefficients,
t ∈ C and |t| is sufficiently large, in fact any typical value1 of f will do). The Betti
realization has an integral structure.

(2) De Rham realization. For an arbitrary k, one can consider the exponentially
twisted de Rham cohomology H•

DR(X;∇f ), where ∇f is the integrable connection on
the trivial module OX defined by ∇f (h) = dh + hdf . It should be brought to the
reader’s attention that the connection ∇f has irregular singularity, thus does not fit
into the picture of [13].

When k = C, and when the Betti cohomology is taken R = C as its coefficient
ring, it is known that the cohomology groups in (1) and (2) are isomorphic. This
theorem could be attributed to Deligne–Malgrange [15, pp. 79, 81, 87] (idea: reduce
the problem to A1 and use the fact there are two Stokes sectors), Dimca–Saito (the
upshot is [17, Proposition 2.8], the idea is to use the “canonical” algebraic extension of
a meromorphic connection on a punctured disk to Gm, as explained in [30, I (4.5)]),
and Sabbah [35, Theorem 1.1].

(3) Rigid analytic de Rham realization. When k is a field equipped with a complete
ultrametric, one can consider the rigid analytic version of the twisted de Rham
cohomology H•

DR(X
an;∇f ).

When k is of characteristic 0, it follows from the André–Baldassarri comparison
theorem [2, Theorem 6.1] that (2) and (3) are isomorphic2. Note that the complex
analytic version of this result is false even in the simplest situation X = A1, f = Id,
since ∇f has irregular singularity at infinity (indeed, the complex analytification of
∇f is isomorphic to the trivial connection: ∇an

f = e−f ◦ d ◦ ef ).

1We say t is a typical value of f if t falls in the largest open subset of A1,an on which Rif∗Q are
locally constant for all i.

2The André–Baldassarri theorem as stated in [2] does not immediately imply the said isomorphy,
as the variety we consider is not assumed to be defined over a number field. Instead of walking
through their dévissage argument, we shall present an alternative proof of it.
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(4) ℓ-adic realization. Assume that k is a finite field of characteristic p > 0. Fix a
nontrivial additive character ψ : k → C∗, and an algebraic closure ka of k. Let km be
the subfield of ka such that [km : k] = m. One can consider the L-series associated
with the exponential sums defined by f :

Sm(f) =
∑

x∈X(km)

ψ(Trkm/k f(x)); Lf (t) = exp

{ ∞∑
m=1

Sm

m
tm

}
.

By a theorem of Grothendieck, this L-series is the (super) determinant of the Frobenius
operation on a twisted Qℓ-étale cohomology theory.

(5) Crystalline realization. When k is a perfect field of characteristic p > 0, one can
consider the rigid cohomology H•

rig(X/K; f∗Lπ), or rigid cohomology with compact
support H•

rig,c(X/K; f∗L∨
π ). Here, Lπ is a certain overconvergent isocrystal on A1

k

called “Dwork isocrystal”, and L∨
π its dual isocrystal. The two cohomology groups are

related by Poincaré duality for rigid cohomology with twisted coefficients.
By a theorem of Etesse and Le Stum [21] (see also [4]), the compactly supported

rigid cohomology admits a Frobenius operation which, when k is finite, could determine
the L-series as in Item (4).

In these notes, we shall prove a comparison theorem between (0.1/2) and (0.1/5),
thus building a bridge between topology and arithmetic.

To state the result, let us set up some notation.
• Let X be a smooth scheme over a finitely generated Z-algebra R of characteristic

0 which is an integral domain. Let f : X → A1
R be a morphism. Let σ : R → C be

any embedding of R into the field C of complex numbers.
• For each maximal prime p of R, let κ(p) be the residue field of p, let Kp be the

field of fractions of W (κ(p))[ζp], the ring of Witt vectors of κ(p) with pth roots of
unity adjoined.

• For an R-algebra R′, we still use f to denote the morphism XR′ = X ×R

Spec(R′) → A1
R′ .

The most accessible statement of our result is the following.

Theorem 0.2. There is a dense Zariski open subset U of Spec(R) such that for
any closed point p ∈ U , any integer m, the Kp-dimension of the rigid cohomol-
ogy Hm

rig(Xκ(p)/Kp; f
∗Lπ) equals the complex dimension of the complex vector space

Hm
DR(X ×R,σ Spec(C);∇f ).

In the main text, we shall give a precise condition on which p is good for the
comparison theorem to hold based on ramifications of f at infinity. The place p is
good, if the reduction of f modulo p does not have wild ramifications at infinity. See
Theorem 3.18.

We shall also prove a version of Theorem 0.2 comparing the algebraic Higgs cohomol-
ogy associated with f and an overconvergent Higgs cohomology. See Proposition 6.4.
This latter comparison theorem has significant weaker restrictions on the shape of f .

WhenX is an open subspace of P1, the theorem is due to Phillepe Robba [34]. When
X is a curve, the theorem is a simple corollary of Joe Kramer-Miller’s theorem [26,
Theorem 1.1]. It is also a consequence of the Grothendieck–Ogg–Shafarevich formula
for isocrystals (one can either compute local indices directly and apply Christol–
Mebkhout [9, Théorème 5.0-10], or use the “irregularity = Swan conductor” theorem
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of Matsuda [31], Tsuzuki [37], and Crew [12] together with the fact that the Swan
conductor an Artin–Schreier representation is 1), and the vanishing of H0.

Theorem 0.2 (or rather its stronger version, Theorem 3.18) is desirable, because it
seems that in the literature, the methods used to study exponential sums are either
toric in nature, or only applicable to “tame” functions (e.g., Newton nondegenerate
Laurent polynomials, or Newton nondegenerate and convenient polynomials), whereas
Theorem 3.18 is unconditional. In practice, Theorem 3.18 allows us to calculate the
dimension of the rigid cohomology, hence the degree of the L-series, using topological
methods. See §5 for some concrete examples. Here we only explain one general
procedure for producing examples on which Theorem 0.2 is applicable.

Example 0.3 (Katz’s situation). Let P be a smooth projective variety of pure
dimension n over a number field K. Let L1, . . . ,Lr be invertible sheaves on P .
Suppose we are given sections si ∈ H0(X,Li) of these invertible sheaves such that the
zero loci Di = {si = 0} form a divisor with strict normal crossings.

Let X = P
⋃r

i=1Di. Let s0 ∈ H0(X;Le1
1 ⊗ · · · ⊗ Ler

r ), and s∞ = se11 · · · serr .
Assume that X0 = {s0 = 0} is a smooth subvariety of P . Write X∞ = {s∞ = 0} be
the vanishing divisor of s∞.

Then f(x) = s0(x)/s∞(x) is a well-defined regular function on X. We assume in
addition the divisor X0 = {s0 = 0} is transverse to all the intersections Di1 ∩· · ·∩Dim .

X0

X∞

P

Figure 1. Katz’s situation

If p is a prime of OK such that
(1) the logarithmic pairs (P,X∞) and (X0, X0 ∩X∞) all have good reductions at

p, and
(2) the residue characteristic of p does not divide e1 · · · er,

then Theorem 0.2 (for the function f : X → A1) is valid at p. Moreover, if
⊗r

i=1 L⊗ei

is ample, then the rigid cohomology is nonzero in degree n only.
For more details, we refer the reader to Corollary 4.6.

0.4. Previously known theorems about degrees of L-series.
(a) ℓ-adic theorems. When k is a finite field, and when X = Gn

m, Denef and Loeser
studied the étale cohomology appeared in (0.1/4). They showed that [16, Theorem 1.3]
if f is “nondegenerate with respect to its Newton polyhedron at infinity”, then the
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twisted étale cohomology is acyclic except in degree n, and the Frobenius eigenvalues
are pure of weight n. In general, they were able to show that the Euler characteristic
of the étale cohomology agrees with the Euler characteristic of the algebraic de Rham
cohomology (0.1/2) defined by a Teichmüller lift of f (the combinatorial formulas for
both theories match).

In Katz’s situation (0.3), assuming the invertible sheaves Li are ample, the étale
cohomology associated with the exponential sums of the function g was studied by
Katz, see [23, Theorem 5.4.1]. In this case, he proved the L-series is a polynomial or a
reciprocal of a polynomial, whose degree can be calculated using Chern classes. We
could also deduce these results from Theorem 0.2.

(b) p-adic theorems. When k is a finite field and X = Gn
m × Gm

a , the p-adic
properties of the L-series were studied by E. Bombieri [6], and later greatly expanded
by A. Adolphson and S. Sperber [1]. The studies of Adolphson and Sperber are based
on Dwork’s works [18, 19], and methods from singularity theory and toric geometry.

The upshot is that Adolphson and Sperber introduced a complex of p-adic Banach
spaces, and an operator α with trace acting on the complex, such that the hyper-
determinant of α gives rise to the L-series of the exponential sum. Moreover, when the
function f is “nondegenerate and convenient”, Adolphson and Sperber proved that
the cohomology spaces of this complex are finite dimensional, and concentrated in a
single cohomological degree. The dimensions of these cohomology spaces are the same
as the algebraic de Rham cohomology spaces.

Even when the exponential sum is defined on Gn
m ×Gm

a , Theorem 3.18 could imply
results that cannot be deduced from the classical theorems, as it could handle Newton-
degenerate functions. See Example 5.1 for a (trivial) illustration and Example 5.2 for
two more complicated cases.

Remark 0.5. The Dwork–Bombieri–Adolphson–Sperber complex is similar to the
complex computing the rigid cohomology (0.1/5), and the former maps into the latter
naturally. Their differences can be summarized as follows

• the Dwork–Bombieri–Adolphson–Sperber complex is a complex of Banach spaces,
whereas the complex computing rigid cohomology is a complex of ind-Banach
spaces, and is never Banach;

• the Dwork–Bombieri–Adolphson–Sperber complex should be thought of as a
twisted de Rham complex on a rigid analytic subspace of a toric variety, but the
rigid cohomology is defined via a complex on the rigid analytic torus (as a dagger
space);

• the finiteness of Dwork–Bombieri–Adolphson–Sperber cohomology does not seem
to be known beyond the Newton nondegenerate case (if the exponential sum is
defined on a 1-dimensional torus, its finiteness may be recovered using a similar
technique we use in these notes); the rigid cohomology of an exponential sum is
always finite dimensional (special case of a general theorem of Kedlaya [24]).

We note that a comparison theorem between a dagger variant of Adolphson–Sperber
cohomology and rigid cohomology has been proven by Peigen Li [28].

0.6. About the proof. The strategy is to reduce the problems to A1 via taking
direct images, and then use the theory of p-adic ordinary differential equations to
deal with the problems on A1. There are two major inputs, namely Christol and
Mebkhout’s characterization of “p-adic regular singularity” [8], and Robba’s index
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computation using radii of convergence [34]. It should also be obvious that many of
the arguments we present below are influenced by Baldassarri [3], and Chiarellotto [7].

In Section 1 we recall the notion of radius of convergence of a differential module. In
Section 2 we explain how to use Robba’s index theorem to make local calculations. In
Section 3 we globalize the results of Section 2 and prove the main theorem. Section 5
contains some examples. The last section discusses the Higgs variant of Theorem 0.2.

Acknowledgment. We are grateful to Daqing Wan for communications on several
examples of exponential sums and for pointing out Katz’s theorem. We would like to
thank the referee for his/her helpful suggestions.

1. Radii of convergence

This section reviews the notion of radius of convergence of a differential module.
We also recall a few basic results, well-known to experts, that we will be using later.

1.1. Notation. In this section we fix the following notation.
• Let K be a complete ultrametric field of characteristic 0. Assume that the residue

field of K is of characteristic p > 0. Let π be an element of K satisfying πp−1 + p = 0.
The field K is the “base field” where spaces are defined.

• Let Ω be an algebraically closed complete ultrametric field containing K, such
that |Ω| = R≥0. Assume that the residue field Ω is a transcendental extension of the
residue field of K. The field Ω plays an auxiliary role which will give the so-called
“generic points” to geometric objects.

• Let I be a connected subset of R≥0. Let ∆I be the rigid analytic space whose
underlying set is

{x ∈ Kalg : |x| ∈ I}.
Let D±(x; r) be the rigid analytic space whose underlying set is the open/closed disk
of radius r centered at x ∈ K. We use O to denote the sheaf of rigid analytic functions
on these spaces.

• In addition to the rigid analytic spaces above, we also consider their extensions
to Ω. Let ∆I,Ω be the analytic space over Ω whose points are {x ∈ Ω : |x| ∈ I}.
Similarly, for each ξ ∈ Ω and r ∈ R≥0, define D+

Ω(ξ; r) = {x ∈ Ω : |x− ξ| ≤ r}, and
D−

Ω(ξ, r) = {x ∈ Ω : |x− ξ| < r}.
• By a “differential module” over ∆I or D±(a; r), we shall mean a finite free

O-module E over ∆I or D±(a; r) equipped with an integrable connection.
• The ρ-Gauss norm on K[x] is∣∣∣∣ ∑

i∈N

aix
i

∣∣∣∣
ρ

= sup{|ai|ρi : i ∈ N}.

It extends to the field K(x) of rational functions naturally. For ρ ∈ R>0, denote by Fρ

the completion K(x) with respect to the ρ-Gauss norm | · |ρ. It turns out that Fρ is
also a complete ultrametric field, and carries a continuous extended derivation d/dx.

• A differential module over Fρ is a finite dimensional Fρ-vector space V equipped
with an K-linear map D : V → V , such that for any a ∈ Fρ, any v ∈ V , the Leibniz
rule D(av) = da

dxv + aD(v) holds. It follows that D is automatically continuous.

Remark 1.2 (From O-modules to Fρ-modules). Let I ⊂ R≥0 be an interval. Let
ρ > 0 be an element in I. Then there is a natural continuous homomorphism

φρ : O(∆I) → Fρ
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such that |φ(f)|ρ = |f |ρ.
To construct the homomorphism, first assume I = [a, b] is a closed interval. Then

each rigid analytic function f on ∆I could be written as

f(x) =
∑
n∈Z

cnx
n, an ∈ K,

such that |cn|bn → 0 as n → +∞, and |cn|an → 0 as n → −∞. In particular,
|cn|ρn → 0 as n → ±∞. Set PN (x) =

∑
|n|≤N cnx

n ∈ K(x). Then PN → f with
respect to the supremum norm of O(∆I). The condition that |cn|ρn → 0 implies that
(PN )∞N=1 is a Cauchy sequence with respect to the ρ-Gauss norm on K(x). Hence
limN→+∞ PN exists in Fρ. We define this element to be φρ(f).

In general, we choose an interval [a, b] ⊂ I containing ρ and define φρ(f) =

φρ(f |∆[a,b]
). One checks that this definition satisfies the required properties.

Thus, if N is a free O-module on ∆I for some connected I ⊂ R≥0, ρ ∈ I, then
the pullback V = N ⊗O(∆I),φρ

Fρ gives rise to a differential module over Fρ, with
D(n) = ∇ d

dx
n for any n ∈ N . For simplicity we shall write this tensor product simply

by V = N ⊗O Fρ.

Definition 1.3. Let V be a vector space over Fρ equipped with a norm | · |. Recall that
the operator norm of an operator T on V is defined to be |T |V = supv∈V {0} |T (v)|/|v|;
and the spectral radius of T to be the quantity

|T |sp,V = lim
s→∞

|T s|1/sV .

The operator norm of T certainly depends upon the norm, but two equivalent norms
determine the same spectral radius [25, Proposition 6.1.5].

Let V be a differential module over Fρ. Then the radius of convergence of V is

R(V ) = |π| · |D|−1
sp,V ,

For 0 < r < 1, we say a differential module M over ∆[r,1[ or ∆]r,1[ is overconvergent
(or solvable at 1) if limρ→1− ρ

−1R(M ⊗ Fρ) = 1.

Example 1.4. The spectral radius of the trivial differential module (Fρ, d/dx) equals
|π|ρ−1. Thus its radius of convergence equals ρ. As the spectral radius of a differential
module V is bigger than or equal to that of d/dx [25, Lemma 6.2.4], we know that
the radius of convergence of any differential module over Fρ is in the range ]0, ρ].

The terminology “radius of convergence” comes from the so-called “Dwork transfer
theorem”, which we record below.

Theorem 1.5 (Dwork). Let M be a differential module over ∆I of rank n. Let ρ ∈ I.
Then the following two conditions are equivalent.

(1) The radius of convergence of M ⊗O Fρ is R.
(2) For any ξ ∈ ∆{ρ},Ω, the restriction of M to the open disk D−

Ω(ξ;R) has n
linearly independent horizontal sections.

Proof. The proof of (1) ⇒ (2) is [25, Theorem 9.6.1]. Here the variable t used by
Kedlaya is t− ξ in our context, and the differential module considered by Kedlaya is
the restriction of M to the open disk (thus the connection matrix automatically has
entries in the ring of analytic elements, fulfilling the hypothesis of the cited theorem).
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The proof of (2) ⇒ (1) is [25, Proposition 9.7.5]. Here it is important to note that
we should consider the field Ω instead of K itself, so that we have enough “generic
points” available. □

The “most” convergent differential modules over ∆I are said to satisfy the “Robba
condition”. These modules should be thought of as the correct p-adic analogues of
differential modules with regular singularities over a punctured disk. See Remark 1.9.

Definition 1.6. Let M be a differential module over ∆I . M is said to satisfy the
Robba condition if for any ρ ∈ I, the differential module M ⊗O Fρ has radius of
convergence equal to ρ.

Lemma 1.7. Let M be a differential module over ∆I satisfying the Robba condition.
Then any subquotient differential module of M satisfies the Robba condition.

Proof. This lemma should be well-known. Let us nevertheless provide the proof for
the convenience of the reader.

Let x0 be a point of ∆I,Ω. Let M ′′ be a quotient of M . Then the horizontal basis
of M |D−

Ω (x0;|x0|) is sent to a set of horizontal sections of M ′′ which necessarily generate
M ′′|D−

Ω (x0;|x0|). This implies that M ′′|D−
Ω (x0;|x0|) is trivial.

Let M ′ be a differential submodule of M . Now put M ′′ =M/M ′. Since

H0
DR(D

−
Ω(x0; |x0|);M) → H0

DR(D
−
Ω(x0; |x0|);M

′′)

is surjective, and since bothM andM ′′ are trivial differential modules over D−
Ω(x0; |x0|),

the dimension of horizontal sections of M ′ over D−
Ω(x0; |x0|) equals the rank of M ′,

i.e., M ′ is trivial on D−
Ω(x0; |x0|). □

Finally, we quote a theorem due to Christol and Mebkhout [8]. See also [20] and [25,
Theorem 13.7.1].

Theorem 1.8 (Christol–Mebkhout). Let M be a differential module over ∆]0,1[.
Assume that there exists a basis e1, . . . , en of M such that

• the entries of the matrix representation η of ∇t d
dt

with respect to this basis belong
to O(D−(0; 1)),

• M is overconvergent (see Definition 1.3), and
• the eigenvalues of η(0) belong to Zp ∩Q.

Then there exists a basis of M under which the matrix of ∇t d
dt

has entries in Zp.
Moreover, M satisfies the Robba condition.

Remark 1.9. Let K be a field of characteristic 0. Let Σ ⊂ A1
K ⊂ P1

K be a finite
subset of K-rational points. Let (E ,∇) be an algebraic integrable connection on
A1

K Σ which has regular singularity near ∞.
Since E is regular at ∞, there is a basis of E (as an OA1

K Σ-Module), such that
under this basis, the entries of the matrix η of ∇t d

dt
are without poles along ∞.

Such bases are called “saturated bases” in the theory of algebraic ordinary differential
equations. The eigenvalues value of η(0) are called the exponents of (E ,∇) near ∞.
These exponents certainly depend on the choice of the saturated basis mentioned
above. But exponents under different choices of saturated bases will only differ by
integers. If α is an exponent of (E ,∇) near ∞, and ι : K → C is an embedding of
K into C, then exp(−2π

√
−1ι(α)) are the eigenvalues of the monodromy operators

(around ∞) of (E ,∇) regarded as complex integrable connections.
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In this paper, (E ,∇) will arise as Gauss–Manin connections of some function
f : X → A1

K , thus their monodromy eigenvalues are roots of unity, and the exponents
are all rational numbers. Theorem 1.8 tells us that,

• if K is a field equipped with a complete ultrametric whose residue characteristic
is p > 0,

• if |x| ≤ 1 for any point x ∈ Σ,
• if the exponents of (E ,∇) are in Q ∩ Zp, and
• if (Ean|∆]1,∞[

,∇) is overconvergent,
then (Ean|∆]1,∞[

,∇) will satisfy the Robba condition. Here ∆]1,∞[ can be identified
with the punctured disk centered at ∞ of radius 1.

2. Indices of differential modules

In this section, we use the notion of radii of convergence and Robba’s index theorem
to prove some cohomology groups are zero. The notation and conventions made in
Paragraph 1.1 are still enforced in this section.

Lemma 2.1. Let N be a differential module over ∆[a,b]. Assume that there exists
a ≤ ρ ≤ b such that the radius of convergence of any differential submodule of N ⊗ Fρ

is < ρ. Then H0
DR(∆[a,b];N) = {0}.

Proof. Let N ′ be the O-submodule of N generated by horizontal sections of N . Since
O(∆[a,b]) is noetherian, N ′′ is finitely generated, and is equipped with a trivial
connection. It follows that N ′ is a finite free differential module over ∆[a,b], say of
rank r. Thus N ′ ⊗O Fρ is a trivial differential submodule of N ⊗O Fρ of rank r. Being
trivial, N ′ ⊗O Fρ has radius of convergence equal to ρ. The hypothesis then implies
that r = 0, in other words, N ′ = 0 and H0

DR(∆[a,b];N) = {0}. □

We give a simple calculation of the radius of convergence.

Example 2.2. Let L be the differential module on ∆]0,1[ = D−(0; 1) {0} defined by
the system

d

dx
− π

x2
.

Then for any 0 < ρ < 1, the radii of convergence of both L and its dual are equal to
ρ2 < ρ.

Proof (cf. [34, §5.4.2]). Let t ∈ Ω be a any point of radius ρ. Let x = t + y. A
horizontal section of the differential system is given by exp

(
−π
(

1
t+y − 1

t

))
. The

Taylor series for 1
t+y − 1

t at y = 0 is

(2.3)
∞∑
ν=1

± 1

tν+1
yν .

For each r < ρ, the r-Gauss norm of this Taylor series equals

sup{rν/ρν+1 : ν ∈ N} = r/ρ2.

Thus exp
(
π
(

1
t+y − 1

t

))
converges for y in the open disk D−(0; r) where r < ρ2.

We claim that u(y) = exp
(
π
(

1
t+y − 1

t

))
diverges for some y satisfying |y| = ρ2.
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Indeed, write 1
t+y − 1

t as 1
t2 y + h(y). Then |h(y)|ρ2 < 1 and exp (−πh(y)) is

convergent for all y ∈ Ω such that |y| = ρ2. It follows that

exp
(πy
t2

)
= u(y) · exp (−πh(y))

is convergent on {y ∈ Ω : |y| = ρ2}, if u(y) were convergent there. This is absurd, as∑
πn/n! diverges. Thus, the radius of convergence of L equals ρ2 < ρ.
The dual of L is the differential module associated with the differential system

d

dx
+

π

x2
,

and the argument is identical. □

Lemma 2.4. Suppose [a, b] is an interval contained in ]0, 1[. Let M be a differential
module on ∆[a,b] satisfying the Robba condition. Then we have

H0
DR(∆[a,b];M ⊗ L) = 0.

Proof. By Lemma 1.7, any submodule of M satisfies the Robba condition. By [25,
Lemma 9.4.6(c)] and Example 2.2, the radii of convergence of all differential submodules
of M ⊗ L are equal to the radius of convergence of L, which is < ρ at Fρ. Thus
Lemma 2.1 implies the desired result. □

The above vanishing of cohomology groups implies the vanishing of the cohomology
groups of some special differential modules over the Robba ring.

Definition 2.5. The Robba ring is the colimit

R = colim
r→1−

O(∆]r,1[) = colim
r→1−

O(∆[r,1[).

It is equipped with a derivation d/dx. As in Paragraph 1.1, one can define the notion
of a differential module over R. Suppose M is a differential module over R with
derivation D. Define H0

DR(R;M) = KerD, and H1
DR(R;M) = CokerD.

Lemma 2.6. Let M be a differential module on the space D−(0; 1) {0}. Assume
that M satisfies the hypothesis of Theorem 1.8. Let L be as in Example 2.2. Then we
have

H0
DR(R; (M ⊗ L)⊗R) = H1

DR(R; (M ⊗ L)⊗R) = 0.

Proof. Let s be a horizontal section of M ⊗ L over the Robba ring, then there must
exist r < 1 such that the section is defined on the annulus ∆]r,1[, and thus on the
annulus ∆[a,b] for any [a, b] ⊂ ]r, 1[. By Lemma 2.4, we know the section has to be
zero on all such ∆[a,b], and hence the section must be globally zero. This implies that
H0

DR(R; (M ⊗ L)⊗R) = {0}.
Thanks to the vanishing of H0, the vanishing of H1 will follow if we can show the

Euler characteristic of M ⊗ L⊗R is zero. By Theorem 1.8, we can make a Qp-linear
change of bases to put the matrix of ∇x d

dx
in a upper triangular form. Thus there is a

filtration
M =Mn ⊃Mn−1 ⊃ · · · ⊃M1 ⊃M−1 = {0}

of M by differential submodules such that the subquotients Mi/Mi−1 are of rank 1,
necessarily satisfy the Robba condition (Lemma 1.7). Thus, the vanishing of the Euler
characteristic of M ⊗ L ⊗R is implied by the vanishing of the Euler characteristic
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of Mi/Mi−1 ⊗ L. Thus we may assume M has rank 1 and is defined by a differential
equation d

dx − c
x , with c ∈ Zp ∩Q.

The de Rham complex for M ⊗ L⊗R is the filtered colimit

colim
r→1−

DR(M ⊗ L⊗O∆[r,1[
).

Choose a sequence of numbers an(r) such that an(r) ↑ 1−. The above complex reads

colim
r→1−

lim
n

DR(M ⊗ L|∆[r,an(r)]
).

The transition maps in the inverse system having dense images, one knows that R1 limn

equals zero (Kiehl’s Theorem B). Thus it suffices to prove the Euler characteristic of

(2.7) ∇ d
dx

: M ⊗ L|∆[r,an(r)]
→M ⊗ L|∆[r,an(r)]

is zero.
Note that M ⊗ L is defined by a differential operator of order one with coefficients

in Ω(x). Thus we can use Robba’s index theorem [34, Proposition 4.11], which in our
situation asserts that, if I = [a, b], then

(2.8) χ(∇d/dx) =
d logR((M ⊗ L)⊗O Fρ)

d log ρ

∣∣∣
ρ=a

− d logR((M ⊗ L)⊗O Fρ)

d log ρ

∣∣∣
ρ=b

.

Since the radius of convergence of M ⊗L at Fρ always equals ρ2, both quantities of the
right hand side of the displayed equation are equal to 2. Thus the Euler characteristic
is zero. This completes the proof of the lemma. □

Lemma 2.9. Let M be differential module over ∆]0,1[ satisfying the hypothesis of
Theorem 1.8. Let L be as in Example 2.2. Then

H0
DR(∆]0,1[;M ⊗ L) = H1

DR(∆]0,1[;M ⊗ L) = {0}.

Proof. The de Rham cohomology groups are computed by the inverse limit

lim
n

{
Γ(∆In ,M ⊗ L)

∇ d
dx−−−→ Γ(∆In ,M ⊗ L)

}
where In is a sequence of closed intervals [an, bn] contained in ]0, 1[ such that an ↓ 0,
bn ↑ 1. Again, R1 lim is zero since the transition maps have dense image (Kiehl’s
Theorem B). Thus, it suffices to prove the vanishing of H∗

DR for each ∆I .
For each closed interval I ⊂ ]0, 1[, the vanishing of zeroth cohomology follows from

Lemma 2.4. To show that the first cohomology groups are zero, it suffices to prove
the Euler characteristic of

Γ(∆I ;M ⊗ L)
∇ d

dx−−−→ Γ(∆I ;M ⊗ L)

is zero. By Theorem 1.8, there is a filtration

M =Mn ⊃Mn−1 ⊃ · · · ⊃M1 ⊃M−1 = {0}

of M by differential submodules such that the subquotients Mi/Mi−1 are of rank 1,
necessarily satisfy the Robba condition. By induction, it suffices to prove the assertion
assuming M has rank 1. In the rank 1 case, Robba’s index theorem (2.8) applies.
Arguing as in the proof of Lemma 2.6 shows that the Euler characteristic is zero. □
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3. Rigid cohomology associated with a regular function

3.1. In this section, we continue using the notation made in Section 1. Thus k
is a perfect field of characteristic p > 0, K is a complete discrete valued field of
characteristic 0 containing an element π satisfying πp−1 + p = 0, and the residue field
of K is k. The ring of integers of K is denoted by OK

Our policy is to use Gothic letters to denote schemes over OK . For an OK -scheme
S, let S0 = S⊗OK

k, S = S⊗OK
K. For a finite type K-scheme T , let T an be the

rigid analytic space associated with T .
We denote by D−(∞; r) the rigid analytic space P1

K D+(0; r−1).

3.2. Let conventions be as in Paragraph 3.1. Let f : X → P1
OK

be a generically
smooth, proper morphism between OK-schemes. Let X = f−1(A1

OK
). We assume

that X is smooth over OK . Denote by f |X by f . The morphisms X0 → P1
k, X → P1

K ,
X0 → A1

k, and X → A1
K induced by f : X → P1

OK
or f : X → A1

OK
are still denoted

by f or f respectively. This abuse of notation is unlikely to cause confusions.
In the following, we will assume that f : X → P1

OK
satisfies the following hypothesis.

(∗) Let S ⊂ P1
K be the non-smooth locus of f : X → P1

K . Then the intersection of
P1

k with the nonsmooth locus of f : X → P1
OK

is contained in the Zariski closure
of S. We assume S ∩ D−(∞; 1) is a subset of {∞}. Additionally, we assume
the exponents of the algebraic Gauss–Manin connections of f : X → A1

K (see
Remark 1.9 and (3.9) below) near ∞ are in Q ∩ Zp .

The condition (∗) will be used to ensure the restrictions of the Gauss–Manin connections
on D−(∞; 1) are overconvergent, and satisfy the Robba condition.

Remark 3.3. If X is smooth over OK of relative pure dimension n, and if the
polar divisor P = f

∗
(∞OK

) =
∑
miDi is a relative Cartier divisor with relative

strict normal crossings over OK , such that p ∤ mi for any i, then we shall prove in
Lemma 3.11 below that the condition (∗) is valid.

3.4. In order to calculate rigid cohomology, we need to set up some notation for
tubular neighborhoods. For r < 1, set [P0]X,r = f

−1
(D+(∞; r)) (“closed tubular

neighborhood of radius r”), ]X0[X = X
an ⋃

r<1[P0]X,r, and Vr := X [P0]X,r.
Denote by j the inclusion map ]X0[X → X, and by jr the inclusion map Vr → X.

3.5 (The Dwork isocrystal). In this paragraph we explain what the Dwork isocrystal
is. The affine line A1

k sits in the frame (A1
k ⊂ P1

k ⊂ P̂1
OK

) where P̂1
OK

is the formal
completion of the projective line over OK with respect to the maximal ideal of OK .
Therefore to describe this crystal we only need to write down a presentation of it (as
an integrable connection) on P1,an

K .
On the rigid analytic projective line, the tubular neighborhood of ∞k ∈ P1

k is
the complement of the closed unit disk D+(0, 1) of radius 1, i.e., D−(∞; 1). The
analytification of the algebraic integrable connection

∇D : OA1
K
→ Ω1

A1
K
, h 7→ dh+ πhdt

is easily seen to have ρ as its radius of convergence on D−(a; ρ) for any |a| ≤ 1,
ρ < 1. Its restriction to the tubular neighborhood of ∞ is precisely the connection
we dealt with in Example 2.2, hence has radius of convergence equal to ρ2 at Fρ,
which converges to 1 as ρ → 1. Thus (OA1,an

K
,∇D) is overconvergent for any open
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disk. By the theory of rigid cohomology ([27, Definition 7.2.14, Proposition 7.2.15]),
the differential module determined by (OA1,an

K
,∇D) gives rise to an overconvergent

isocrystal on A1
k, which could be taken as a coefficient system for the rigid cohomology.

We denote it by Lπ, and call it the Dwork isocrystal. See [27, §4.2.1].

3.6. Let notation and conventions be as in Paragraph 3.2. Consider the morphism
f : X → A1

K . Then we can define an algebraic integrable connection on the structure
sheaf OX

∇πf : OX → Ω1
X/K , ∇πf (h) = dh+ πhdf.

This integrable connection is the inverse image of the connection (OA1 ,∇D) via the
morphism f .

By analytification, we obtain an analytic connection, still denoted by ∇πf , on the
rigid analytic space Xan.

Proposition 3.7. Let notation and conventions be as in Paragraphs 3.2 – 3.6. Then
for each integer m, the natural maps

Hm
DR(X;∇πf ) → Hm

DR(X
an;∇πf ) → Hm

rig(X0/K; f∗Lπ)

are isomorphisms of K-vector spaces.

Proof that the right hand side arrow is an isomorphism. Without loss of generality
we could assume X is irreducible. When f : X → A1

K is a constant morphism,
the proposition is trivial. In the sequel we shall assume f : X → A1

K is surjective.
To begin with, let us write down the complex that computes the rigid cohomology.

Let
j†Ωi

X
an

/K
= colim

r→1−
jr∗j

∗
rΩ

i
X

an
/K
.

The analytification of the connection ∇πf gives rise to an integrable connection

∇† : j†OX
an → j†Ω1

X
an ,

which extends to a dagger version of the de Rham complex

DR(X
an
,∇†) : j†OX

an
∇†

−−→ j†Ω1
X

an
∇†

−−→ · · · ∇†

−−→ j†Ωn
X

an .

For an admissible open subspace V of X
an

, let DR(V,∇πf |V ) be the de Rham
complex of ∇πf restricted to V . Set DR(V,∇πf |V ) = RΓ(V ;DR(V,∇πf |V )). We
have

DR(X
an
;∇†) := RΓ(X

an
;DR(Xan,∇†)) = colim

r→1
RΓ(X

an
;Rjr∗DR(Vr,∇πf |Vr

)).

A priori, this complex depends upon the formal completion of the scheme X along
the maximal ideal of OK . However, since X is proper and the integrable connection
(OXan ,∇πf ) is overconvergent (being the inverse image of an overconvergent integrable
connection), [27, Corollary 8.2.3] asserts that it only depends uponX0 and f : X0 → A1

k.
We have then

DR(X
an
,∇†) = RΓrig(X0; f

∗
0Lπ).

Next we explain how to compute the cohomology of the de Rham complex. For
any r < 1 sufficiently close to 1, set Vr = f

−1
(D−(0; r−1)) ⊂ Xan. Then Xan has an

admissible open covering

Xan = Vr ∪ f
−1

(D−(∞; 1) {∞}).
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In the bounded derived category of K-vector spaces, the Mayer–Vietoris theorem gives
an isomorphism between the de Rham complex DR(X,∇πf ) and the homotopy fiber
of the map

DR(Vr,∇πf )⊕DR(f
−1

(D−(∞; 1) {∞}),∇πf ) → DR(Vr ∩ f
−1

(D−(∞; 1)),∇πf ).

Since the colimit, as r → 1−, of DR(Vr,∇πf ) equals RΓrig(X0, f
∗
0Lπ), in order to

prove the comparison between rigid and de Rham cohomology it suffices to prove the
natural morphism

(3.8) DR(f
−1

(D−(∞; 1) {∞}),∇πf ) → colim
r→1−

DR(Vr∩f
−1

(D−(∞; 1) {∞}),∇πf )

is an isomorphism in the derived category of vector spaces over K.
Let S be the finite subspace of A1,an

K containing all the critical values of f . Let
X ′ = X f−1(S). Then the direct image sheaf

(3.9) E = Rif∗(Ω
•
X′/K ,d),

is equipped with a Gauss–Manin connection ∇GM. By projection formula, the direct
image sheaf

Ri(f |X′)∗(DR(OXan ,∇πf )|X′)

is isomorphic to the analytification of the tensor product

E ⊗ (OA1
K
,∇D)

on A1,an
K S.

Thus, if u : P1,an
K ]S0[P1

OK

→ P1,an
K denotes the open immersion, then

u†(Ean,∇GM),

is the rigid cohomological direct image Ri(f |X′
0
)rig∗OX′

0
.

Using the Leray spectral sequence, we see that in order to prove the morphism (3.8)
is an isomorphism, it suffices to prove that for any i, the map
(3.10)
RΓ(D−(∞; 1) {∞}; Ean ⊗ (OA1,an

K
,∇D)) → colim

r→1−
RΓ(∆]1,r−1]; Ean ⊗ (OA1,an

K
,∇D))

is an isomorphism.
We shall show that both sides of (3.10) are acyclic. For convenience, we shall use a

coordinate x around ∞ ∈ P1,an
K , thus swap ∞ and 0. Let M be the restriction of the

analytification of E = Ri(f |X′)∗(Ω
•
X′/K) to the disk D−(0; 1) {0}.

In the lifted situation, we know that M is overconvergent. This is proved by
P. Berthelot [5, Théorème 5] and N. Tsuzuki [38, Theorem 4.1.1]. The hypothesis
on exponents in (∗) implies that M satisfies the Robba condition by Theorem 1.8.
Moreover M is overconvergent, On the other hand, the differential module L considered
in Example 2.2 is precisely the restriction of (OA1

K
,∇D)

an in the vicinity of ∞.
The right hand side of (3.10) now reads

colim
r→1−

{
(M ⊗ L)|∆[r,1[

∇ d
dx−−−→ (M ⊗ L)|∆[r,1[

}
,

which is precisely the de Rham complex of M ⊗ L restricted to the Robba ring:

(M ⊗ L)⊗O R D−→ (M ⊗ L)⊗O R.
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Thus, Lemma 2.6 implies that the right hand side of (3.10) is trivial. The acyclicity of
the left hand side of (3.10) follows from Lemma 2.9. This completes the proof that
the analytic twisted de Rham cohomology is isomorphic to the rigid cohomology. □

Lemma 3.11. Let notation be as above. Assume further that the hypothesis of
Remark 3.3 is true. Then the differential module M satisfies (∗)

Proof. By the regularity of the Gauss–Manin system, the differential module M is a
restriction of an algebraic integrable connection which is regular singular around 0. In
particular, there exists a basis of M such that the derivation ∇ d

dx
is given by

d

dx
− η(x)

where η is a rational function which has at worst a simple pole at x = 0 (for example,
take the restriction of an algebraic basis and restrict to the analytic open D−(∞; 1)).

As we have assumed that the multiplicities of the polar divisor are prime to p, the
algebraic calculation of exponents of the Gauss–Manin system around infinity implies
that the eigenvalues of (xη)|x=0 belong to Zp ∩Q. (One can embed field of definition
of the variety into C, then use [14, Exposé XIV, Proof of Proposition 4.15] to show
that the eigenvalue of η(0) with respect to the algebraic basis are rational numbers
whose denominators are not divisible by p.) □

Proof that the left hand side arrow is an isomorphism. This is a theorem of André
and Baldassarri [2, Theorem 6.1]. Since the precise hypothesis of their theorem is not
met in the present situation (the connection is not defined over a number field), we
shall nevertheless provide a proof. The key point is a theorem of Clark, which states
that in a good situation, the analytic index of a differential operator equals its formal
index.

Let P = f
∗
(∞OK

) be the polar divisor. By GAGA, the algebraic de Rham complex
is computed by complex

DRmer : OX
an(∗Pred)

∇πf−−−→ Ω1
X

an(∗Pred) → · · · → Ωn
X

an(∗Pred),

which is a subcomplex of DR(Xan,∇πf ). Here Ωm
X

an(∗Pred) =
⋃∞

e=1 Ω
m
X

an(ePred).

Cover X
an

by Xan = f
−1

(A1,an) and [P0]X,ϵ = f
−1

(D+(∞; ϵ)), the Mayer–Vietoris
theorem implies that DR(X,∇πf ) is the homotopy fiber of

DR(Xan,∇πf )⊕RΓ(f
−1

(D+(∞; ϵ));DRmer) → DR(Xan ∩ f−1
(D+(∞; ϵ)),∇πf ).

Taking colimit with respect to ϵ→ 0, we see it suffices to prove the colimit, as ϵ→ 0,
of the following map

RΓ(f
−1

(D+(∞; ϵ));DRmer) → DR(Xan ∩ f−1
(D+(∞; ϵ)),∇πf ).

is a quasi-isomorphism. Again, we shall show both items are acyclic.
Let E be the algebraic Gauss–Manin system on A1 S as in (3.9). Let ι : A1

K S →
P1

K be the inclusion. Let E(∗S) = ι∗E . Using Leray spectral sequence, it suffices to
prove the de Rham complex of

(3.12) colim
ϵ→0

(Ean ⊗ (OA1,an
K

,∇D))|D+(∞;ϵ) {∞}

(“de Rham complex with essential singularities”) and that of

(3.13) colim
ϵ→0

(E(∗S)⊗ (OA1
K
(∗S),∇D))

an|D+(∞;ϵ).
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(“de Rham complex with moderate singularities”) are acyclic.
A similar argument as in the proof of Lemma 2.9 using Robba’s index theorem

yields that (3.12) has zero Euler characteristic and vanishing H0, thus acyclic.
Since the de Rham complex of (3.13) is a subcomplex of that of (3.12), its H0 is

also trivial.
We proceed to prove that (3.13) has zero Euler characteristic. Let O0 be the

local ring OP1,an
K ,∞ with the uniformizer x defined by a coordinate around ∞. Let

Ô0
∼= K[[x]] be its x-adic completion. Then the de Rham complex of (3.13) is that of

(E(∗S)⊗ (OA1
K
(∗S),∇D))

an ⊗O
P

1,an
K

O0

=(E(∗S)⊗ (OA1
K
(∗S),∇D))

an ⊗O
P

1,an
K

O0[1/x].

Choose a cyclic vector [13, II 1.3] for the differential module

(E(∗S)⊗ (OA1
K
(∗S),∇D))

an ⊗O
P

1,an
K

O0[1/x]

over the differential field O0[1/x]. Thus we obtain a differential operator u =
∑

i ai
di

dxi

with ai ∈ O0, and the Euler characteristic equals the index of

O0[1/x]
u−→ O0[1/x].

On the other hand, Malgrange’s index theorem [29, Théorème 2.1b] implies that the
index of

Ô0[1/x]
u−→ Ô0[1/x]

equals zero. Thus, it suffices to prove the index of

(3.14) Ô0/O0
u−→ Ô0/O0

equals zero. Since E is regular singular, ∇D is rank one and irregular, the indicial
polynomial of u is zero. Thus the hypothesis on non-Liouville difference in Clark’s
theorem [10] as stated in [7, Théorème 2.12] is satisfied, and this theorem implies the
index of (3.14) is zero. This completes the proof of Proposition 3.7. □

Next we prove the main result of these notes by removing the properness hypothesis
from Proposition 3.7.

3.15. We follow the conventions made in Paragraph 3.1. Let f : X → P1
OK

be a proper
morphism between OK-schemes. Assume X has relative pure dimension n over OK .
Let X be a Zariski open subscheme of X, such that

• X ⊂ Y := f
−1

(A1
OK

),
• H = Y X =

⋃r
j=1 Hj is a relative Cartier divisor with relative strict normal

crossings over OK .
We shall denote the restriction of f to X by f .

For each subset J of {1, 2, . . . , s}, denote by HJ the intersection
⋂

j∈J Hj . (Conven-
tion: when J is the empty set, HJ is understood as Y.) Then each HJ is a smooth
OK -scheme. The restriction of f to HJ , the closure of HJ in X, is denoted by fJ , and
fJ |HJ

is denoted by fJ .

3.16. Hypothesis. In the following, we shall assume that that the exponents of the
algebraic Gauss–Manin connections of fJ : HJ → A1

K near ∞ are in Q ∩ Zp. In other
words, we assume that the condition (∗) holds for each fJ .
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Remark 3.17. In (3.15), if X is smooth over OK , X X is a divisor with strict normal
crossings, and the polar divisor P = f

∗
(∞OK

) can be written as P =
∑r

i=1miDi,
such that each Di is smooth and irreducible, p ∤ mi for any i, then Hypothesis 3.16
holds.

The following theorem is a more general version of Proposition 3.7: when Pred =

f
∗
(∞OK

)red = X X, the theorem reduces to Proposition 3.7; the general case is
deduced from Proposition 3.7 by some standard yoga.

Theorem 3.18. Let notation and conventions be as in (3.15). Assume Hypothesis 3.16
holds. Then for each integer m, the natural maps

Hm
DR(X;∇πf ) → Hm

DR(X
an;∇πf ) → Hm

rig(X0/K; f∗Lπ)

are isomorphisms.

Proof. The morphism fJ : HJ → A1
OK

is a proper. By Hypothesis 3.16, we may apply
Proposition 3.7 to each fJ . Thus, the natural maps

Hm
DR(HJ ;∇πfJ ) → Hm

DR(H
an
J ;∇πfJ ) → Hm

rig((HJ)0/K; f∗JLπ)

are isomorphisms.
There exists a second-quadrant spectral sequence with

(3.19) E−i,j
1 =

⊕
Card J=i

Hj−2i
rig ((HJ)0/K; f∗JLπ)

(i, j ≥ 0) which abuts to H−i+j
rig (X0/K; f∗Lπ). Indeed, Mayer–Vietoris for a finite

closed covering [27, Proposition 7.4.13] gives a spectral sequence

Ea,b
1 =

⊕
Card J=a+1

Hb
rig,c((HJ)0/K; f∗JLπ) ⇒ RΓrig,c

(
s⋃

j=1

(Hj)0/K; f∗Lπ|⋃(Hj)0

)
,

(a, b ≥ 0). Using the normal crossing hypothesis, applying Poincaré duality [27,
Corollary 8.3.14], the finiteness of rigid cohomology [24], and replacing π by −π (since
the dual of Lπ is L−π), we obtain a spectral sequence

(3.20) E−a,b
1 =

⊕
Card J=a+1

Hb−2a
rig ((HJ)0/K; f∗JLπ) ⇒ RΓrig,

⋃
(Hj)0(Y0/K; f∗Lπ)

(a, b ≥ 0). Since RΓrig(X0/K; •) fits into a distinguished triangle

RΓrig,
⋃
(Hj)0(Y0/K; •) → RΓrig(Y0/K; •) → RΓrig(X0/K; •) →

(the derived incarnation of the relative cohomology sequence), we deduce the desired
spectral sequence (3.19) by augmenting the rigid cohomology of Y0 to the zeroth
column of the spectral sequence (3.20).

We have similar spectral sequences for the algebraic and analytic de Rham coho-
mology groups. The E1-differentials of these spectral sequence are all Gysin maps in
the various theories. Thus the natural maps between the theories give rise to maps of
these E1-spectral sequences. Proposition 3.7 implies that these maps are isomorphisms
on the E1-stage. Thus they induce isomorphisms on the abutments. □

Proof of Theorem 0.2. Let notation be as in the statement of Theorem 0.2. Let K

be the field of fractions of R. Using resolution of singularities, upon making a finite
extension of K (both rigid and de Rham cohomology are compatible with such field
extensions), we can embed XK into a smooth proper K-scheme XK such that XK XK
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has strict normal crossings, and f extends to a morphism f : XK → P1
K. There is a

Zariski open subset U of Spec(R) over which
• XK as well as all the intersections of the boundary divisors have good reduction

at primes in U , and
• the multiplicities of the components of the polar divisor are not divisible by

residue characteristics of U .
We may assume U is affine, and by abuse of notation we will still denote its

associated ring by R. For each closed point p in U , let p be the characteristic of the
residue field κ(p). Then there exists a p-adically complete discrete valuation ring
R′ containing ζp and a ring homomorphism R → R′, such that the closed point of
Spec(R′) is mapped to p. Let K ′ be the field of fractions of R′ and let k′ be its residue
field. Then we have

H•
rig(Xκ(p)/Kp; f

∗Lπ)⊗Kp
K ′ ∼= H•

rig(Xk′/K ′; f∗Lπ).

We can then apply Remark 3.17 and Theorem 3.18 to XR′ , obtaining an isomorphism
between the rigid cohomology H•

rig(Xk′/K ′;Lπ) and the exponentially twisted de Rham
cohomology of XK′ .

To conclude, we use the following two facts: (i) ∇cf and ∇f have isomorphic
de Rham cohomology group over K ′, for any c ∈ K ′×; and (ii) the formation of twisted
algebraic de Rham cohomology is compatible with extension of scalars. The fact (i) is
proved below as a lemma, and the fact (ii) is clear. □

Lemma 3.21. Let K be a field of characteristic 0. Let f : X → A1 be a morphism
of smooth K-schemes. Then for all c ∈ K×, the dimensions of the K-vector spaces
Hi

DR(X;∇cf ) are the same.

Proof. It suffices to prove ∇cf and ∇f have isomorphic twisted de Rham cohomology
groups. The standard argument (extracting coefficients defining X and f , choosing a
finitely generated subfield, embedding the field into C) allows us to assume K = C.
Then we can use the isomorphism provided by (0.1/1) and (0.1/2) to conclude that the
two twisted de Rham cohomology groups are isomorphic to the relative cohomology
groups

Hi(Xan, f−1(t)an;C), and Hi(Xan, (cf)−1(t)an;C) (|t| ≫ 0)

respectively. When |t| is large, these two groups are isomorphic, since f is topologically
a fibration away from finitely many points. □

4. Katz’s situation

Below we shall prove Corollary 4.6, confirming the assertions made in Example 0.3.
We begin with some rather trivial topological discussions. In (4.2)–(4.4), complex

algebraic varieties are equipped with analytic topology.

4.1. Let g : Y → A1 be a proper, generically smooth morphism of algebraic varieties
over C. Let X be an open dense subvariety of Y , and E = Y X. Suppose that there
is a neighborhood T of E such that g|T and g|T E are locally topologically trivial
fibrations (hence are trivial as A1 is contractible). Let F be a generic fiber of g and
F = F ∩X.
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g

F ∩ E
E

T

FY

Lemma 4.2. Notation as in 4.1, the natural map Hi(Y, F ;Z) → Hi(X,F ;Z) is an
isomorphism for all i.

Proof. This is a simple application of excision. To begin with, since T → A1 is a
trivial fibration, there is a deformation retract from T onto T ∩ F . This induces a
homotopy equivalence between T ∪ F and F . Thus the pair (Y, T ∪ F ) and the pair
(Y, F ) have the same cohomology.

Since E is contained in the interior of T ∪F , excision implies that the pair (Y, T ∪F )

and the pair (X, (T E)∪F ) have the same cohomology. Using the fact that T E → A1

is a trivial fibration, we find a deformation retract from (T E)∪F onto F . Thus the
pair (X, (T E) ∪ F ) and the pair (X,F ) have the same cohomology. This completes
the proof. □

Next, we explain how to construct Y and F used in Lemma 4.7 from Katz’s
situation.

Construction 4.3. Let P be a smooth proper scheme over a subfield of C of pure
dimension d. Let L1, . . . ,Lr be invertible sheaves on X. Let si ∈ H0(P ;Li) be sections
of Li for i = 1, . . . , r. Let Di be the vanishing scheme of si.

Let e1, . . . , er ≥ 1 be natural numbers, and s0 ∈ H0(P ;L⊗e1
1 ⊗ · · · ⊗ L⊗er

r ) be
a nonzero section. Let X0 be the vanishing locus of s0. We shall assume that
X0 ∪

⋃r
i=1Di is a divisor with strict normal crossings.

Let s∞ =
∏
seii . Let [u, v] be the homogeneous coordinates of P1. Define X to be

the closed subscheme of P×P1 defined as the vanishing scheme of us0−vs∞ = 0. Note
that us0− vs∞ is a section of the invertible sheaf (

⊗
L⊗ei
i )⊠OP1(1). Let f : X → P1

be the morphism induced by the projection to P1. Let ∞ = [0, 1] ∈ P1, and we regard
P1 {∞} as a copy of A1. Set Y = f−1(A1). Set g = f |Y , X = P

⋃r
i=1Di. Then

X is naturally an open subset of Y . Write f = g|X .

It is clear the function g : Y → A1 satisfies the hypotheses of Lemma 4.2. Indeed,
let π : X → P be the restriction of the projection pr1 : P × P1 → P . Then the
inverse image of intersection B = X0 ∩ (

⋃
Di) in X is isomorphic to B × P1, and

E = π−1(B)∩Y is isomorphic to B×A1. The fiber g−1(0) = X0 ⊂ Y can be identified
with F , and f−1(0) ⊂ X can be identified with F . The inverse image under π of a
tubular neighborhood of B serves as the role of T .
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In practice, we are more interested in considering the function f on X; and the
construction above allows us to construct a proper function g which is ready for taking
reduction modulo p.

The next lemma tells us that in a certain preferable situation, the calculation of
cohomology groups reduces to the calculation of the Euler characteristics.

Lemma 4.4. Notation as in Construction 4.3, assume in addition that X and P X0

are affine (e.g., when the invertible sheaf
⊗r

i=1 L
⊗ei
i is ample). Then Hi(X, f−1(0))

is nonzero only if i = dimX.

The Euler characteristic of H•(X, f−1(0);Q) is

(−1)dimP

∫
P

c((Ω1
P )

∨)

(1 +
∑r

i=1 eic1(Li))
∏r

i=1(1 + c1(Li))
.

See for example [23, Theorem 5.4.1]. If the hypothesis of Lemma 4.4 is fulfilled, then
the absolute value of this number is also the dimension of HdimX(X, f−1(0);Q).

Proof of Lemma 4.4. In the following we shall take the constant field Q as the coeffi-
cients of the cohomology groups, and suppress it from the expressions. Since X and
f−1(0) are smooth affine varieties, the relative cohomology Hi(X, f−1(0)) vanishes if
i > dimX. It suffices to prove the relative cohomology also vanishes when i < dimX.

For any subset J of {1, 2, . . . , r}, let DJ =
⋂

j∈J Dj . Let D(p) =
⊔

Card J=pDJ ,
and write D(0) = P . The scheme D(p) is smooth proper of dimension n− p, and the
natural morphism D(p) → P is affine.

There exists a spectral sequence

(4.5) E−p,q
1 = Hq−2p(D(p), D(p) ×P X0) ⇒ Hq−p(X, f−1(0)).

Granting the existence of this spectral sequence, let us finish the proof. Since P X0

is affine, D(p) D(p) ×P X0 are affine for all p. If i < dimX, then i− p < dimD(p).
By Artin’s vanishing theorem, we have

Hi−p(D(p), D(p) ×P X0) = Hi−p
c (D(p) D(p) ×P X0) = {0}.

It follows that E−p,q
1 = 0 if q − p < dimX. This implies that Hi(X, f−1(0)) vanishes

when i < dimX, as desired. The construction of the spectral sequence (4.5) will be
recalled in Paragraph 4.7 at the end of this section. □

Having discussed some topology, we now return to Example 0.3. We henceforth
enforce the notation set up there.

Corollary 4.6. Assume p is a prime of K satisfying the two conditions (0.3/1) and
(0.3/2). Let p be the residue characteristic of p, and Kp be the completion of K at p.

(1) The dimension of the rigid cohomology space Hi
rig(X ⊗Kp(ζp)/Kp(ζp); f

∗Lπ)

is equal to the dimension of the rational vector space Hi(Xan
C , f−1(0)anC ;Q).

(2) If both X and P X0 are affine, the rigid cohomology is nonzero only in
cohomology degree dimX, and its dimension over Kp is∫

P

c((Ω1
P )

∨)

(1 +
∑r

i=1 eic1(Li))
∏r

i=1(1 + c1(Li))
.

Thus, the L-series associated with the function g modulo p is a polynomial or a
reciprocal of a polynomial, whose degree equals

∫
P

c((Ω1
P )∨)

(1+
∑r

i=1 eic1(Li))
∏r

i=1(1+c1(Li))
.
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If Li are ample, the assertion (2) is due to N. Katz [23] (without the liftablity
hypothesis).

Proof of Corollary 4.6. We first perform Construction 4.3, obtaining f : X → P1 over
the field K. To show that f satisfies the Hypotheses 3.15, we need to verify that
the exponents of the Gauss–Manin connections of f are all rational numbers whose
denominators are not divisible by p. This can checked over C. Since g|B×A1 can be
identified with the projection to the second factor, it suffices to show the eigenvalues
of the monodromy of g near f

−1
(∞) are not p-power roots of unity. Take a disk

∆ around ∞, and let h : V = f
−1

(∆) → ∆ be the holomorphic function induced
by f . It suffices to show that the monodromy eigenvalues on the vanishing cycle
Rϕh(QV ) are not p-power roots of unity. By a local calculation, Maxim, Morihiko
Saito, and Schürmann [32, Proposition 4.1, (a) “Normal crossing case”] showed that
under our hypothesis we have Rϕh(QV )|B = 0. At a point in

⋃
Di B, the function h

is locally of the form h(x1, . . . , xn) = x
ei1
i1

· · ·xeimim
for some m in the analytic topology,

and therefore the monodromy eigenvalues at the stalks of Riϕh(QV ) are not p-power
roots of unity for all i. By a spectral sequence argument, using the relation between
monodromy and exponents [13, Théorème II 1.17], we conclude that the denominators
of the exponents of the Gauss–Manin connections near infinity are not divisible by p.

Localizing an integral model of the morphism f : X → P1 at the prime p, we get a
morphism

f : X → P1
OKp

.

From the above discussion, Theorem 3.18 is applicable, and it implies the rigid
cohomology associated with the reduction of f has the same dimension as the twisted
algebraic de Rham cohomology over Kp.

By performing a base extension to C, using the isomorphism provided by (0.1/1)
and (0.1/2), we know that the dimension of the twisted algebraic de Rham coho-
mology defined by g is equal to the complex dimension of the relative cohomology
Hi(Xan

C , f−1(0)anC ;C). Here using t = 0 instead of a generic t is legal, because by
construction 0 is a typical value of g; see the footnote on page 1.

The second assertion follows from Lemma 4.4 and the trace formula. □

A particular instance of the Katz’s situation is as follows. Let P = Pn, X∞ be the
Fermat hypersurface defined by

∑
zn+1
i = 0, and let X0 be the vanishing locus of the

monomial z0 · · · zn. Then the function

z 7→ z0 · · · zn
zn+1
0 + zn+1

1 + · · ·+ zn+1
n

: Pn {
∑
zn+1
i = 0} → A1

fits Katz’s situation. Assuming the residue characteristic of p is not a factor of n+ 1,
then we can apply Theorem 3.18. Since this is the “ample case”, Lemma 4.4 implies
that the rigid cohomology is trivial except in degree n, and its dimension equals (−1)n

times the Euler characteristics, which is nn(n+ 1). Of course, this computation may
already be deduced from Katz’s theorem.

4.7. We recall a construction of the spectral sequence (4.5) for convenience of the
reader. Notation and conventions will be as in Lemma 4.4.

Consider the natural simplicial morphism a : D(•+1) → P , viewing P as a constant
simplicial scheme. Then the relative cohomology of the pair (X, g−1(0)) is computed
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by the homotopy cofiber of the morphism

a∗a
!v!Q → v!Q,

where v : P X0 → P is the open immersion.

X0

DJ

The complex
a∗a

!v!Q = [· · · → a2∗a
!
2v!Q → a1∗a

!
1v1Q]

can be understood explicitly using the fact that DJ intersects X0 transversely. Indeed,
if aJ is the inclusion morphism from DJ into P , then ai =

∐
Card J=i aJ , and (we use

∨ for Verdier dual)

aJ∗a
!
Jv!Q[dimX] = aJ∗(a

∗
Jv∗Q[dimX])∨.

Let vJ : DJ DJ ∩X0 → DJ be the inclusion morphism.
We claim that a∗JRv∗Q ∼= RvJ∗Q. Indeed, consider the following fiber diagram,

X0 ∩DJ X0

DJ P

ιJ ι

aJ

,

and the distinguished triangle

ι∗ι
!Q → Q → Rv∗Q → .

Since X0 is a smooth divisor in P , the Thom isomorphism theorem implies that
ι!QP = QX0

[−2]. Pulling back the above distinguished triangle by aJ yields a
distinguished triangle

a∗J ι∗QX0 [−2] → QDJ
→ a∗JRv∗Q → .

Since ι is proper, and since X0 ∩DJ is smooth of codimension 1, we have

a∗J ι∗QX0 [−2] = ιJ∗QX0∩DJ
[−2]

= ιJ∗ι
!
JQDJ

.

By adjunction, (Hom being taken in the derived category) Hom(ιJ∗ι
!
JQX0

,QX0
) equals

Hom(ι!JQ, ι
!
JQ) = H0(X0 ∩DJ ,Q). Thus up to a nonzero constant multiple on each

connected component of X0∩DJ , there exists only one nonzero morphism from ιJ∗ι
!
JQ

to Q in the derived category. (In fact, using the existence of integral structure, the



22 SHIZHANG LI AND DINGXIN ZHANG

term “up to a nonzero constant” could be replaced by “up to sign”.) Therefore the
homotopy cofiber of the morphism

a∗J ι∗QX0
[−2] QDJ

ιJ∗ι
!
JQDJ

is necessarily isomorphic to the homotopy cofiber of the canonical morphism

ιJ∗ι
!
JQDJ

→ QDJ

which is RvJ∗Q. This justifies the claim.
Thus, letting p = Card J be the codimension of DJ , we have

aJ∗a
!
Jv!Q = aJ∗(vJ!Q)[−2p].

The complex aJ∗(vJ!Q) is precisely the derived incarnation of the relative cohomology
H•(DJ , DJ ∩X0). The spectral sequence (associated with the “filtration bête”) of the
complex a∗a!v!Q → Q gives the spectral sequence (4.5).

5. Examples

Example 5.1. As a sanity check, here is a trivial example calculating the degree of
the L-series of a Newton degenerate polynomial.

Let k be a finite field of characteristic > 2. Let f : A2
k → A1

k be the regular function
defined by the polynomial f(x, y) = x2y − x. (The projective completion of the curve
f(x, y) = t, t ̸= 0, has a cuspidal singularity at [0, 1, 0], which can be simultaneously
resolved by blowing this point up.)

The morphism is smooth, the polynomial f is Newton nondegenerate, but it is not
convenient. Thus the theorems of Adolphson–Sperber [1] and Denef–Loeser [16] do
not give the degree of the L-series.

A direct computation is easy:

Sm(f) =
∑

x,y∈km

ψm(x2y − x))

=
∑

x,y∈km

ψm(x2y)ψm(x)−1

= qm +
∑
x ̸=0

ψ(x)−1
∑
y∈km

ψm(x2y)

= qm.

It follows that the L-series is (1− qt)−1.
Here is a topological calculation. It is easy to see f(x, y) = t for t ̸= 0 is isomorphic

to Gm as schemes over k. Thus one can still use the Teichmüller lift of f to conclude
that the rigid cohomology H∗

rig(A
2
k; f

∗Lπ) is 1-dimensional in degree 2, and zero
otherwise. In particular, Lf (t)

−1 is a linear polynomial.

Next, we recall the degree and total degree of the L-series of exponential sums.
Let notation be as in Paragraph (0.1/4). In view of Grothendieck’s theorem, we can
write Lf (t) = P (t)/Q(t), where P,Q ∈ Q[t] are coprime. Then the degree of Lf is
degQ− degP ; the total degree of Lf is degP + degQ.
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By the trace formula for rigid cohomology, we know that the degree of Lf is equal
to the Euler characteristic

∑
(−1)i dimHi

rig,c(X; f∗Lπ), and the total degree of Lf is
no bigger than

∑
dimHi

rig,c(X; f∗Lπ). (Since X is smooth, Poincaré duality identifies
the dimension of the compactly supported cohomology with the dimension of the rigid
cohomology up to a dimension shift.)

Example 5.2. Hyperplane arrangements give rise to many interesting exponential
sums whose L-series cannot be computed using traditional methods. But topological
and combinatorial methods sometimes can deduce useful information about the Milnor
fiber of the arrangement, which, through Theorem 3.18, can determine the dimension
of the rigid cohomology for large primes.

Here are two concrete examples.
(1) Let f(x, y, z) = xyz(x − y)(y − z)(z − x) be the polynomial defining the so-

called A3 plane arrangement. Then f is not convenient, but Cohen and Suciu [11,
Example 5.1] have shown that the Betti numbers of the “Milnor fiber” f = 1 are: b0 = 1,
b1 = 7, b2 = 18. Since f is homogeneous, all the fibers f−1(t), t ̸= 0, are homeomorphic.
It follows that the relative cohomology H•(C3, f−1(t);Z) equals the reduced singular
cohomology of f−1(1), up to a shift of cohomology degree. Using the isomorphism
between relative cohomology (0.1/1) and twisted de Rham cohomology (0.1/2), we
deduce that the nonzero Betti numbers of the twisted de Rham cohomology are
b2 = 7, b3 = 18.

Since f is homogeneous of degree 6, the Gauss–Manin connections of f are defined
over Gm ⊂ A1, and will be trivialized by a 6-to-1 finite étale covering of Gm.
Therefore, the denominators of the exponents of the Gauss–Manin connections will
only contain 2 and 3 as prime factors. Thus, for p ≠ 2, 3, Theorem 0.2 implies that
the rigid cohomology groups of f∗Lπ with compact support are of dimensions 0, 7, 18

respectively. In particular, the degree of the L-series of the exponential sum associated
with f has degree 11; and total degree ≤ 25.

(2) Let f(x, y, z) = xyz(x+ y)(x− y)(x+ z)(x− z)(y+ z)(y− z) be the polynomial
defining the so-called B3 plane arrangement. Cohen and Suciu [11, Example 5.2] have
shown that the Betti numbers of the Milnor fiber f = 1 are: b0 = 1, b1 = 8, b2 = 79.
As in (1), when p ≥ 3, we get the dimension of the rigid cohomology of f∗Lπ. We
may conclude that the degree of the L-series of f is 71, and the total degree is ≤ 87.

Example 5.3 (Exponential sum on a curve). Let X be a smooth irreducible projective
curve of genus g over a finite field k. Let f : X → P1

k be a generically étale, degree
d morphism with ramification indices not divisible by p. We assume there is a good
lift of f (i.e., satisfies Hypothesis 3.15). Let Z = f−1(∞) = {τ1, . . . , τm}. Let V be
a nonempty Zariski open subset of X such that f(V ) ⊂ A1

k. We assume that the
ramification points of f as well as the points X V are rational over k (which is
harmless in considering the degree of L-series). Let c = Card(Z V ).

Then a topological calculation implies that the twisted algebraic de Rham coho-
mology of a lift of f has cohomology in degree 1 only, and the dimension equals
2g + c+m+ d− 2. In this case Theorem 0.2 applies and we conclude that L−1

f |C (t) is
a polynomial of degree 2g + c+m+ d − 2. This matches the length of the “Hodge
polygon” considered by Kramer-Miller [26, Theorem 1.1].

Example 5.4 (Exponential sum on SL2). Let k be a finite field of characteristic
p > 0. Let V = k2 be the standard representation of SL2. For A ∈ SL2(k), let
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A(n) = Tr(SymnA). Then for a1, . . . , aN ∈ k,

f(A) =

N∑
n=1

anA
(n)

is a regular function on SL2. Then the rigid cohomology H∗
rig(SL2; f

∗Lπ) is related to
the exponential sum

(5.5)
∑

A∈SL2(km)

ψm(f(A)),

where km is a fixed degree m extension of k, ψ1 is a nontrivial additive character on
k, ψm = ψ1 ◦ Trkm/k.

If p is sufficiently large, and if (a1, . . . , aN ) is sufficiently general, we can calculate
the dimension of the rigid cohomology using topology. It is not difficult to see f−1(t) is
N disjoint union of P1×P1 ∆. Using the long exact sequence for relative cohomology
one sees that H∗(SL2(C), f−1(t);Q) is nonzero only in degree 1, and 3 and of dimension
N − 1, N + 1 respectively. Thus the L-series Lf (t) of the exponential sums (5.5) is
the reciprocal of a degree 2N polynomial.

6. A remark on Higgs cohomology

Let f : X → A1 be a nonconstant morphism from a smooth algebraic variety of pure
dimension n over a field k to the affine line. We have been studying cohomological
objects that are related to the irregular connection ∇f . In the theory of twisted
algebraic de Rham cohomology, one can associate an irregular Higgs field to the
connection ∇f , i.e., the Higgs field defined by ∧df . Thus, in conjunction with the
de Rham complex of ∇f one may also study the algebraic Higgs complex

Ω0
X

∧df−−→ Ω1
X

∧df−−→ · · · ∧df−−→ Ωn
X .

A celebrated theorem of Barannikov–Kontsevich (the first published proof is due to
Sabbah [36]; for a p-adic proof, see Ogus–Vologodsky [33]) asserts that the algebraic
Higgs cohomology and the twisted algebraic de Rham cohomology have the same
dimension.

In this section we explain how to transplant this to the rigid analytic world. We
shall compare a “dagger” variant of the Higgs cohomology with the algebraic Higgs
cohomology. Then in the nice situation, Theorem 0.2 allows us to relate twisted rigid
cohomology and the dagger Higgs cohomology.

In the work of Adolphson–Sperber [1] on exponential sums, one also finds the
use of algebraic Higgs cohomology. In fact their finiteness theorem is deduced from
the finiteness of the Higgs cohomology of the reduction. In contrast, the result of
this section happens completely on the generic fiber, thereby does not really concern
whether the pole divisor has good reduction or not.

6.1. Notation.
• Let K be a discrete valuation field of characteristic 0 whose residue characteristic

is p. Let X be a scheme smooth over a discrete valuation ring OK .
• Let f : X → A1

R be a proper function admitting a compactification f : X → P1
OK

,
in which X is smooth over R.

• Also denote by f : X → P1
K and f : X → P1

K be the restriction of f to the
generic fibers X and X of X and X respectively.
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• Let Vr be the inverse image f−1(D+(0; r)) of the rigid analytic disk under f .
Thus Vr is an rigid analytic subspace of X.

6.2. Hypothesis. We assume that f : X → A1
K has no critical values in D−(∞; 1).

Note that we do not enforce the hypothesis that the components of the pole divisor
have good reduction anymore.

6.3. We can consider three types of Higgs cohomology.
(1) The algebraic Higgs cohomology

RΓ(X; (Ω•
X ,df))

of X.
(2) A dagger version of the Higgs cohomology

RΓ(X
an
; j†1(Ω

•
X

an ,df)),

where for a real number r, jr : Vr → X denotes the open inclusion.
(3) The analytic Higgs cohomology

RΓ(Vr; (Ω
•
Vr
,df)) (r > 1).

Proposition 6.4. Notation as above, the natural morphisms

RΓ(X; (Ω•
X ,df)) → RΓ(Vr; (Ω

•
Vr
,df)) → RΓ(X

an
; j†1(Ω

•
X

an ,df))

are quasi-isomorphisms.

Proof. It suffices to prove the first arrow is a quasi-isomorphism, as the third item is
obtained from the second by taking colimit with respect to r → 1−.

Let P be the pole divisor of f : X → P1
K . For any connected subset I of R≥0, let

TI be the inverse image of the rigid analytic annulus ∆I(∞) centered at ∞ ∈ P1.
Thus

TI = f−1(∆I(∞)).

Let Ω•
X

an(∗P ) be the subcomplex of j∗Ω•
Xan consisting of differential forms with at

worst poles along P . Then by rigid analytic GAGA, the natural morphism of complexes

RΓ(X; (ΩX ,df)) → Γ(X
an
; (Ω•

X
an(∗P ),df))︸ ︷︷ ︸

“moderate Higgs complex”

is a quasi-isomorphism.
Choose a function r 7→ δr : ]1,∞[ → R such that 1 > δr > r−1. For each r > 1,

Vr and T[0,δr] form an admissible cover of X. By Mayer–Vietoris, the complex
RΓ(X

an
, (Ω•

X
an(∗P ),df)) is the homotopy kernel of

RΓ(Vr; (Ω
•
Vr
,df))⊕RΓ(T[0,δr]; (Ω

•
T[0,δr ]

(∗P ),df)) → RΓ(T[r−1,δr]; (Ω
•
T[r−1,δr ]

,df))

We shall show that the natural morphism

RΓ(T[0,δr]; (Ω
•
T[0,δr ]

(∗P ),df)) → RΓ(T[r−1,δr]; (Ω
•
T[r−1,δr ]

,df))

is a quasi-isomorphism (in fact, we shall show both are acyclic).
Below we shall write a = r−1, b = δr. Thus 0 < a < b < 1. Let U = Sp(A) be an

affinoid subdomain of T[0,b] admitting an étale morphism to the disk D+(0; 1)n. Then
W = U ∩ T[a,b] is an affinoid subdomain of U as T[a,b] → T[0,b] is an affinoid morphism.
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It suffices to prove the restrictions of the two Higgs complexes on respectively U and
W are acyclic.

Write W = Sp(B). Then the morphism f : X → P1 gives rise to an element in A,
and an element in B via the morphism A→ B. With respect to the the coordinate
system provided by the étale morphism U → D+(0; 1)n, the Higgs complex of B is
the Koszul complex Kos(B⊕n; ∂f

∂x1
, . . . , ∂f

∂xn
) associated with the partial derivatives

∂f/∂xi. Since f is smooth, the Jacobian ideal (i.e., the ideal formed by the partials
derivatives of f) cuts out the empty rigid analytic space. By Nullstellensatz for affinoid
algebras, the Jacobian ideal equals the unit ideal of B. The acyclicity of the Koszul
complex then follows from a standard algebra lemma, Lemma 6.5 below.

The exactness of the “moderate Higgs complex” on Sp(A) is acyclic is proved
similarly. We apply Lemma 6.5 to A[1/f ] and the partial derivatives of f . Again,
since f is smooth, the ordinary Hilbert Nullstellensatz implies that the Jacobian ideal
of f form the unit ideal of A[1/f ]. □

Lemma 6.5. Let R be a commutative ring. Let a1, . . . , an ∈ R be elements such that∑
aiR = R. Then the Koszul complex Kos(R⊕n; a1, . . . , an) is exact in every degree.

Proof. We can assume R is local since we can check the exactness at every prime.
In this local situation, our condition is equivalent to saying that at least one of the
elements ai is a unit in R, hence without loss of generality we may assume a1 is a unit
in R. Since we have a factorization:

Kos(R⊕n; a1, . . . , an) =
⊗
R

[R
·ai−−→ R],

it suffices to note that R ·a1−−→ R is acyclic. □
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